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ABSTRACT

A simple micromechanical model is developed for the interactions in a parallel
square-stacked mixed array of elastic fibers representing the microstructure of a blended
yarn undergoing axial extension. The mixed array consists of a small fraction of relatively
high modulus, low elongation-to-break (LE) fibers dispersed among high elongation-to-
break (uE) fibers. The LE fibers are assumed to break into fragments, and the LE fiber
fragments are assumed to slip relative to neighboring fibers in regions near the fragment
tips. The fiber array experiences lateral compression arising from the remote tension on
the twisted yarn, and frictional forces acting at slipping fiber-to-fiber contact surfaces are
assumed to obey Amontons’ law. Solufions of a dimensionless boundary value problem
for deformations in a unit cell of the fiber array are presented. Dimensionless parameters
involving the constituent L and HE fiber properties are identified and their influence on

blended yarn tensile behavior is illustrated.

Blended or hybrid yarns, consisting of two different
fiber types, have long been produced to improve
strength, stiffness, and other qualities over what can be
achieved in homogeneous yarns. Often a stiff, low elon-
gation (LE) fiber is combined with a compliant, high
elongation (HE) fiber to obtain a yam with both high
initial stiffness and high elongation-to-break. During ex-
tension of such yarns, there is a fragmentation process
where the LE fiber develops multiple breaks along its
length {12, 16]. A similar process occurring in hybrid
composites is believed to be an important factor in real-
izing desirable hybrid effects [14, 19]. First, a series of
isolated breaks develop along the LE fibers. Because the
nominal strain in the neighborhood of the 18 fibers in-
creases, intermediate breaks occur, such that the LE fibers
are broken into fragments with an identifiable average
length. With continued extension, the fragments develop
additional breaks, and so the fragment size becomes
progressively smaller. A beneficial hybrid effect is
achieved when conditions permit the LE fiber fragments
to continue to contribute to the overall stiffness and
load-carrying ability of the yam.
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Twisted fibrous structures, including yarns, ropes, and .
cables, exhibit a unique and important behavior when
loaded in tension. Due to the yarn’s twisted geometry,
transverse compressive forces are induced by the remote
tension along the yarn axis. Each fiber executes a quasi-
helical path through the yarn and so requires a radially
outward-directed distributed reaction force from under-
lying fiber layers to balance the tension on the curved
fiber clement. Transverse compressive forces permit load
transfer to occur between abutting fibers through friction
and give the yarn the cohesiveness needed to function as
a structural unit. With increasing yam tension, transverse
compressive forces also increase, therefore increasing
the magnitude of frictional load transfer between fibers.
This mechanism, first recognized by Galileo [5], is par-
ticularly important in structures twisted from short plant
and animal fibers (i/e., staple yarns), which rely entirely
on friction for structural integrity. In this work, the
induced transverse compressive forces play a crucial rofe
by govemning, through Amontons’ law, the magnitude of
frictional forces at slipping contact surfaces between LE
fiber fragments and HE fibers.
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Analytical works on the mechanics of continuous fil-
ament yarns fall in two major areas, stress analysis and
strength prediction. There is extensive literature on yarn
stress analysis: representative works include those of
Hearle [7, pp. 175-212], Kilby [13}, and Thwaites [25,
26]. Generally, these works treat a helical element of the
twisted yarn, paraliel to the local filament direction, as a
continvum with a variety of simplifying assumptions for
the constitutive behavior of the packed fibers. As such,
yarn stress analysis is concerned with deformations that
may be considered homogeneous over a large number of
fibers, and so no attention is given to problems of broken
fibers, However, in our work, the results for varn internal
stresses obtained in these studies motivate the model
used here for frictional load transfer at slipping fiber
contact surfaces.

The body of work on strength prediction has empha-
sized the stochastic aspects of the failure process, begin-
ning with the well-known works of Daniels {3] and
Pierce [22]. More recent contributions in this line of
research include Phoenix [20], Pitt and Phoenix [23), and
Reallf et al. [24]. These works are intimately concerned
with the progression of breaks in discrefe fibers; how-
ever, with the exception of the work by Pitt and Phoenix
[23], mechanical interactions among the fibers are ad-
dressed by adopting ad hoc load-sharing rules, such as
nearest-neighbor or equal load sharing. Pitt and Phoenix
[23] adopted a micromechanical approach to modeling
load sharing among fibers in nonhybrid yams during the
failure process. Their approach was based on the classi-
cal elastic shear-lag analysis of fiber/matrix composites
[8, 9]. The model we have developed in this paper has a
mathematical structure similar to Hedgepeth and Van
Dyke’s [9] shear-lag model for a three-dimensional fiber
composite. In the composite case, load transfer takes
place by shear of the matrix phase. For packed fiber
arrays in hybrid yarns, load transfer occurs through ge-
ometry changes in the fibers and surface friction.

Realff ef al. [24] have made an important contribution
to understanding the failure process in blended yarns.
Their recent stochastic modeling work illustrates the
complex and critical influence of twist-induced trans-
verse compression on the failure process in blended
yaris. As previously mentioned, transverse compression
strongly influences fiber-to-fiber load transfer, and there-
fore, the distribution of fiber tensions near a fiber break.
In Realff er al.’s stochastic model [24), the distribution
of tension near a break along the fibers’ length axes
enters into the model through a critical length or char-
acteristic distance [23] over which fiber tensions are
locally affected by the presence of the break. The critical
length is assumed inversely proportional to the lateral
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compressive siress. The magnitude of the tensions redis-
tributed to the surviving fibers in a yarn cross section
containing one or more fiber breaks is governed by a
load-sharing rule that imposes more severe loads on
surviving fibers near the break for higher values of yarn
twist. By successfully simulating the experimental re-
sults of Monego and Backer [15, 16], Realff ef al, dem-
onstrated that their model, incorporating a reasonable,
albeit ad hoc, treatment of fiber-to-fiber mechanical in-
teractions, shows promise for predicting the global re-
sponse of blended yarns. Qur ongoing research, aimed
broadly at the basic mechanics of fiber-to-fiber interac-
tions in blended yamns, will prove useful in developing
and refining simulation models for the blended yarn
failure process.

Developing statistical theories for the mechanical be-
havior of fibrous composites has been, and continues to
be, an active research area. Recent works by Curtin |1,
2], Neumeister [18], Phoenix ef al. [21], and Hui ef al.
[10] exemplify the high level of sophistication attained in
the treatment of complex mechanistic aspects without
resort to Monte Carlo simulation. Aspects of modeled
behavior include fiber fragmentation, frictional skp of
fibers, matrix cracking, fiber pullout during failure, and
matrix yielding. Suitable modification of these works fo
address blended yarn behavior, using the results and
insights attainable through our approach, should provide
for the eventual development of predictive theories for
stress-strain and strength behavior in blended yarns.
Such theoretical developments, if pursued, have an ad-
vantage over simulation studies in advancing fundamen-
tal understanding. Trends in yarn behavior will emerge
clearly as functions of the underlying fiber properties.

In this paper, we develop a micromechanical model
for the extension of a hybrid fiber array representing the
microstructure of a hybrid yarn undergoing fragmenta-
tion of the LE fibers. The parallel square-stacked mixed
array of elastic fibers consists of a small fraction of
relatively high modulus LE fibers dispersed among HE
fibers. The LE fibers are assumed to break into fragments
that slip relative to neighboring fibers in regions near the
fragment tips; analysis of frictional slip forces acting in
the slip region is motivated by results for yarn internal
stresses [7, pp. 175-212]. We use the model to investi-
gate the contribution of LE fragments to the load-carrying
ability of the fiber array. A dimensionless parameter {,
which involves the elastic and frictional properties of the
fibers as well as yarn geometry, has a critical influence
over the degree to which the behavior of the fiber array
is dominated by either elastic or frictional slip effects.
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Micromechanical Model
(GENERAL DEVELOPMENT—NO SLIP BETWEEN FIBERS

We consider a uniformly blended twisted hybrid yamn
composed of a small fraction of LE fibers dispersed
among HE fibers. The yarn is assumed to possess a well
accepted, idealized, helical structure [7, pp. 65-67]
where the fibers lie in co-axial concentric layers and
follow helical paths. The tangent of the helix angle varies
linearly with radial position in the yarn from zero at the
center to a maximum on the yam surface. Directing our
attention 1o the central region of the yarn, the fibers are
nearly parallel to the yarn axis. Fibers near the yarn’s
center therefore experience the highest strains during
varn extension, and yarn rupture usually initiates in the
central region.

Stacking of fibers within twisted yarns is, of course,
imperfect. As yarn tension increases, lateral compression
drives the local stacking toward a regular periodic structure,
i.e., square or hexagonal packing. However, fiber rigration
and the tendency for the twisted yarn under tension to
assume a circular cross section necessitate that the fiber
array deviate from a perfect lattice through packing flaws.
Size and shape differences between LE and HE fibers in
blended yarns are expected to increase the degree of defects
in the fiber packing. Hexagonal packing, where each fiber
interacts directly with six neighbors, represents the most
densely packed configuration of paraflel fibers. In square
packing, each fiber interacts directly with only four neigh-
bors. Since flaws reduce the overall demsity of the fiber
packing, and the number of nearest-neighbor fibers avail-
able for interaction, we regard square packing as providing
an effective model for predicting the behavior of real fiber
packing within yarns.

We require the cross-sectional dimensions of the LE
and HE fibers to be roughly similar to the extent that
square packing can be approximated, In common cotton/
polyester blends, where the polyester staple may typi-
cally be (.33 tex versus, say, 0.2 tex for the cotton fiber,
the roughly elliptical shape of the cotton fiber means the
major diameter of the cotton is somewhat larger than the
polyester. For example, assuming an aspect ratio of two
for the typical cotton fiber, the major diameter of the
typical fiber will be 10% larger, and the minor diameter
will be 45% smaller, than the diameter of the polyester
fiber. Since in the array, the cotton fiber cross sections
are randomly oriented about their length axes, we expect
that the disturbance caused by their elliptical shapes will
average out over a large region containing many cotton
fibers. As such, square packing is stll a reasonable
model despite the sizable size and shape differences. The
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cominercial success of cotton/synthetic blends suggests
that effective packing, key to the structural integrity of
the yarn, is indeed attained in practice.

Consider a square-stacked mixed array of parallel, lin-
early elastic fibers representing the microstructure of the
yam near the yarn’s center, For hybrid yarns containing
sufficiently small fractions of LE fibers, we assume the LE
fibers are far enough apart that their regions of influence do
not overlap. The LE fibers are assumed to develop evenly
spaced breaks such that they form fragments of uniform
length 2 1. Based on these assumptions, we investigate the
behavior of a finite section of the fiber array of length /
consisting of one-half of a single LE fiber fragment embed-
ded in the center of a square region of HE fibers. This finite
section is essentially a unit cell of the fiber array, The
x-coordinate axis is parallel to the fiber direction, with the
origin placed at an LE fragment tip. The L& and HE fibers are
assumed to be approximately transversely isotropic. The
fibers are numbered (1, m), where #n is the columa number
and m is the row number; the center L8 fiber is designated
(0, 0) (Figure 1). The fiber array is extended in the x-direc-
tion fo a nominal strain &.

FiGure 1. Numbering scheme for finite section of fiber array.
LE fiber shown shaded.

The general form of the fiber equilibrium equation in
the square-stacked array can be derived as follows: Con-
sider the #n, mth fiber and its abutters. The fiber array is
laterally compressed, due to the interaction of yam ten-
sion and twist, so that fiber-to-fiber load transfer may
occur by means of surface friction. Along the contact line
with each of its four abutters, a contact “shear flow” is
applied to the n,mth fiber. The term shear flow is used
here to connote a force per unit length. Figure 2 illus-



te thegii'sh'ear flows and their contributions to axial
equilibrium of the n,mth fiber. HE fibers each have an
effective ‘axial stiffness E*A*, and the LE fiber has an
ffective axial stiffness FA. In the notation for the shear
7 flows, isuperscripts denote the row numbers and sub-
+'" seripts: denote the column numbers, e.g., g;”/*! is the
“shear flow between fibers in column £, rows j and j + 1.
Introdoce #,,, as the average axial (x-direction) dis-
placement in fiber (», m)} at position x. It is convenient
to take as the displacement reference the position of
points on an undamaged fiber array (the LE fiber is not
fragmented) under the same nominal strain. For HE fi-
bers, the axial force due to LE fiber fragmentation is
E*A*(du, ,/dx). From the free body diagram, Figure
2¢, axial equilibrium can therefore be wriften as

2

nym

E*A*d 7
dx*

m H
+ qn,n+1 - Qn—},n

+ qnm,m-}-l — qnmfl,m — 0 (1)

Our goal is to develop a simple, semi-empirical model
involving a minimum number of physical parameters, some
of which will ultimately be calibrated using experimental
data. With this in mind, we propose that, given that no skip
occurs at the contact surface, the shear flow at the contact
line between two abufting fibers may be considered linearly
proportional to the difference in the fibers’ average axial
displacements. For a contact line between an HE fiber and
the LE fiber, we denote the proportionality constant &, and
use k* for contact lines between two HE fibers. When fiber
(n, m) and all its abutters are HE fibers, we may write the
shear flows on fiber (x, ) as

qn,nJrlm = k*(un+1,m - un,m)

m o pok —
qn"‘l,ﬂ =k ('un,m un—-l,m) ]
mamtl — Ik _
dx = k (uu,m+1 un,m P

3]

The proportionality constants k and k* involve shear-
ing of fibers longitudinally due to surface tractions along
the fiber-to-fiber contact lines. Treating the fiber material
as a homogenous solid, the stiffness constant k* will be
proportional to the HE material’s shear modulus in the
longitudinal transverse plane G, ;. The constant & will
involve the shear moduli of both fibers in a springs-in-
series arrangement. Measurements of the shear modulus
of a variety of textile fibers are tabulated in the book by
Morton and Hearle [17, pp. 418 and 428]; they range
from 0.33 to 1.6 GPa. Physical reasoning suggests the
value of k* should be somewhat less than the value of
G r for the BE fiber material, since the packed array of
HE fibers may be regarded as a porous solid.

qnn’rl,m = k*(un,m - un,m—l)
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FIGURE 2. (a) n,m™ fiber and abutters, (b) contact line shear flows,
(c} n,m™ fiber free body diagram.

The dimensionless position coordinate £ and displace-
ments U, ,, are defined by

x= \E*AMKAE, u,, = e JEFANKAU,, . (3)

Putting Equations 2 into Equation } and nondimension-
alizing, vsing Equations 3, the dimensionless equilibrium
equation for fiber (n, m) is written as

U.;:m + Un+ -+ Un-“l,m + Un,m+1

;
Lim

+ Un,m*l - 4Un,m = 0 s (4)

where primes denote differentiation with respect to £,
For the center LE fiber and the HE fibers abutting that LE
fiber, the equilibrium equations take a slightly different
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form. For LE fiber (0, 0), following the previous proce-
dure, we write

d*ugg .
EA dx2 + q(),lo h q—l,OO + 400’1 — 4y =0 . 3

Using our constifutive assumption relating shear flows
and displacements, taking into account symmetry in the
deformation (u;0 = #gy, = u_;5 = uy_;), and
nondimensionalizing, using Equations 3, we obtain

kA E

k
0o T 4@”(](_*)((]1,0 — Ul =0 . (©)
The #E fiber (1,0) abuts the 1E fiber and three other HE
fibers. The dimensionless equilibrium equation for fiber
(1,0), considering symmetry, is

’{,0 - U2,0 + 2U1.1

k k
+k?UO’O_ 3+k7* Ul!(]:O . (7)

FrRICTIONAL SLIP IN THE FRAGMENTED FIBER ARRAY

As previously mentioned, there is exiensive literature on
internal stresses in twisted yarns during extension. Gener-
ally, workers have assumed that radial and circumferential
compressive stresses are equal, arguing that fibers are free
to slide over each other laterally—exhibiting fluid-like be-
havior. Authors often refer to the lateral stress as a lateral
hydrostatic pressure. For most of the interior of the yarn, the
assumption of equal radial and circumferential compressive
stress components should be a fairly good approximation.
In this paper, we adopt a simple phenomenological descrip-
tion that is compatible with the literature [7, pp. 175-212].
The fiber array is assumed to expericnce a lateratly “hydro-
static” stress, o, = o, = o. Here, however, we use engi-
neering stress, with dimensions of force/(iength)z, rather
than the specific sixess (forcelinear density) commonty
used in the textile literature. The lateral and axial stresses
are average stresses in a continuum that includes the packed
fibers and the voids between them. The magnitude of the
lateral stress is assumed equal to the product of the axial
stress in the fiber array o, and a function m of yarn surface
helix angle and radial position of the fiber array within the
yarn. As a first-order approximation, we take the axial stress
equal to the axial stiffness of the fiber array E times the
nominal axial strain (o, > |a{). Therefore, the lateral stress
is written as

o= —FEey . (85

For estimating a magnitude of 1), Hearle’s results {7, PP-
175-212] can be used, where our % is analogous to his
normalized lateral stress ¢ when both are evaluated at the
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yarn center. Assuming constant volume deformation of
the yarn during extension, we may estimate 1's value
near the yarn center as 1 = 0.5 In (cos &) + 0.75 sin®
where « is the surface helix angle. For a yarn surface
helix angle of 40°, for example, 1 would be 0.18.

We assume that ship occurs between the LE fragment and
the abutting HE fibers in a region near the L& fragment tip, 0
= x < q, where a i$ less than L The shear flow acting along
each slipping contact line is denoted g,. Denoting the aver-
age fiber spacing as d, the normal contact force per unit
length along the fiber-to-fiber contact line is —der, where o
is the average lateral stress in the continuem. Amontons’
law requires that g, = — pdo, where p is the coefficierit of
friction between slipping LE and UE fiber surfaces. There-
fore, using Equation 8, the shear flow along the shpping
contact line may be written as

g, = udEsm . (9)

For the center LE fiber fragment, equilibrfium in the
slipping region, 0 = x. < a, may be written as
—4g,=0 , (10)
where the coefficient 4 arises from the LE fragment

slipping against its four HE abutters. Using Equations 3,
Equation 10 may be nondimensionakized, giving

Ulgp— 4 EA g=0 , (11
where ¢ is given by
g © pdEn
Q= P rhall e (12)
e JKFEFA*  \R*E*AF

In the second of Equations 12 we have used Equation 9.
The parameter ¢ involves only properties of the constit-
uent fibers, the properties of the smeared fiber array, the
position of the array within the yarn; and the yarn twist
(through 7). Therefore, Q may be regarded as somewhat
of a material property of the hybrid yarn.

For fiber (1, 0), frictional slip occurs along its contact
line with the center LE fragment, but we assume no slip
occurs between it and its other three abutters, The di-
mensionless equilibrium equation may be obtained from
the equation for the nonslipping region, Equation 7, by
replacing the terms arising from the elastic interaction
with fiber (0, 0}, (Ugy o — Uy odkfk*, with +Q, repre-
senting the frictional slip shear flow acting on the fiber
(1. 0) in the positive x-direction (the LE fragment slips in
the +x-direction). Therefore, the equilibrium of fiber (1,
() may be written as

’1’,0 + Uy + 2U1,1 - 3U1,0 +Q@=0 (13)
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SvYSTEM OF EQUATIONS AND BOUNDARY
VALUE PrROBLEM

The finite section unit cell of the fiber array consisis of
the square region of fibers lying in the rows and columns
numbered — M through M. We have assumed that the LE
fibers are dispersed far enough apart in the fiber array
such that their influence is contained within a finite
neighborhood of HE fibers that form a unit cell. There-
fore, the fiber-to-fiber shear flows arising from the LE
fiber fragmentation are contained within the unit cell, and
the unit cell outer boundary is free of any shear flows
arising from inferactions with fibers lying in the M + 1t
and ~M — 1™ row or column. The square region
exhibits eight-fold symmetry such that we need only
write equations for the (M + 1)(M + 2)/2 fibers lying
in a right-triangular wedge, as shown in Figure 3 for the
case M = 3. The equations for the center LE fragment
and the abutting #E fiber were developed earlier. Devel-
opment of the equations for the remaining fibers in the
wedge region proceeds from the development of Equa-
tion 4, and involves specializing Equation 4 to take into
account the shear-free condition on the unit cell outer
boundary (for fibers in the M 4 column) and/or symmetry
(for fibers on the wedge boundary). This development is
straightforward and will not be given here.
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FIGURE 3. Eight-fold syrunetry in square array. Equations are written
only for the nonshaded fibers in the wedge-shaped region. & = 3 for
the array shown here.

In real blended yarns, the L& fibers will mix at random
with the HE fibers; the 18 fibers will not be uniformly
dispersed with a set number of HE fibers between them.
As such, our square unit cell is not intended to represent
a verbatim repeating pattern in a perfect periodic struc-
ture. The choice of M is therefore more or less arbitrary,
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since M does not depend directly on the specific fraction
of LE fibers in a particular blend. It turns out that for the
calculations in this paper, choosing M to be 2 or 4 makes
an insignificant difference in the resuits. Our approach
should be useful in describing the behavior of blends
such that the four immediate abutters of each LE fiber are
usually all HE fibers, blends involving up to, say, 10% LE
fibers. To address the behavior of blends with higher
proportions of LE fibers will require an extension of the
current work to consider configurations where an LE fiber
is routinely abutted by one or more other LE fibers.
Nonetheless, we expect our approach will be useful in
predicting trends in blended yarn behavior in general.

The finite section unir cell of the fiber array has length
[, one-half the length of the LE fragment. The dimension-
less length of the unit cell is denoted L, where L is
defined by I = VE*A*/k*L, using Equations 3. The
umit cell represents the repeating pattern of displace-
ments occurring in the fiber array due to LE fiber breaks
roughly evenly spaced 2/ apart. Clearly, £ = L{x = [)
is a plane of symmetry for displacements due to damage,
so for all fibers, we write

Upm(L) =0 (14)
At x = 0, fiber (0, 0) is stress-free (broken), so using the
definition of the displacement reference and Equations 3
leads to '

Uhol0) = 1 (5)

In an earlier paper, we developed a boundary condi-
tion similar to Equation 15 in more detail (Godfrey and
Rossettos [6]). For the intact HE fibers, £ = 0 is also a
plane of symmetry; therefore,

U,.(0) =0, (n, m)#(0,0} (16)
Slip occurs between the LE fragment and its HE abut-
ters in the region 0 = x < g, where ¢ is termed the
extent of the slip region. The dimensionless slip region
extent is denoted «, defined by ¢ = VE*A*/k*«, using
Equations 3. We divide the unit cell into region I, 0 = £
<, where slip occurs along the LE fragment, and region
I, « = £ << L, where no slip occurs. The system of
equations for fiber equilibrinm in region I consists of
Equations 11, 13, and 4 specialized as needed for each of
the remaining fibers in the wedge. In region II, the
system includes Equations 6, 7, and 4 specialized as
needed for each of the remaining fibers in the wedge.
Since all fibers are continuous at & = w, the following
continuity conditions hold, where superscripts I and II
refer to the solution in regions I and II, respectively,
Un'(e)) = U, " a);

Uy'(e) = U", M) (17)
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An additional continuity condition arises from the
assumption that slipping is approached in a continuous
fashion—the shear flows on the LE fragment in the non-
slipping region approach those in the slipping region as
€ — o Using Equations 6 and 11, this condition may be
written as

k
g= };{U o,ou(a) - Ul,aﬂ(a)} (18)

The systems of equations for regions I and IT are
written in matrix form, and solutions in each region are
obtained using an eigenvector expansion technique, as
described in detail for a similar boundary value problem
[6]. The solution process is completed by selecting val-
ues of the slip region extent « and determining the values
of the integration constants and parameter @, such that
the boundary and continuity conditions, Equations 14—
18, are satisfied.

In the results that follow, the parameter E*A*/EA (the
ratio of HE to LE fiber axial stiffnesses) is denoted R, after
the notation used for a similar parameter in the hybrid
composites literature [4]. This parameter occurs in Equa-
tions 6 and 11.

Results
SLiP REGION EXTENT

The behavior of the slip region extent with increasing
Q for various fragment lengths is exhibited in Figure 4.
For the case shown, R(=E*A*/EA} = V4 and k/k*
= 1. A value of R = 4 would be typical for a
cotton/nylon staple blended yarn., For fragments of
length L = 2 and greater, the extent of slip behavior is
similar for values of ( greater than, say, 0.4. For this
regime of O values and fragment lengths, the LE fiber
breaks are sufficiently far apart that they no longer in-
fluence each other, i.e., they appear to be isolated breaks
in an essentially infinite fiber. For vanishingly small Q,
the slip region extent approaches the fragment length.

The influence of varying the elastic properties of the
fiber array on slip extent behavior is exhibited in Figure
5. Increasing the axial stiffness of the 1E fragment rela-
tive to the HE fibers (decreasing R) increases the slip
extent at given values of (. Increasing the stiffness of
the shearing interaction between the LE fragment and the
HE fiber (increasing &/k*) also increases the slip extent at
given values of Q. i

STRAIN PROFILES

The strain in a particular fiber of the array is e
+ du,, . /dx, where the £ (nominal strain) term occurs
due to the definition of the displacement reference. In the
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Slip Extent
&

Q

FiGURE 4. Slip extent & versus Q for various fragment lengths,
R = 145, kfk* = 1. Fragment length L shown next to curves.

Slip Extent

R=I/3, kk*=)

Frourz 5. Slip extent e versus @ for various R and &/k* values. For
kik* equal to ¥4 and 3, R is ¥4, For R equal to 1 and 4, k/k* is 1.
Fragment length L is 4 for all cases.

dimensioniess variables, fiber strain becomes e(1
+ U}, ). The strain profiles along the center LE frag-
ment and the abutting H8 fiber for various values of Q are
exhibited in Figure 6. For this case, R = V4, kfk* = 1,
and L = 2. There is a clear trend toward an increasingly
linear strain profile with decreasing values of Q for the
fragment and the abutting fiber. Increasing values of Q
result in increasing peak strains in both the 1E fragment
and the abutting HE fiber. For values of Q > 0.89, no
slip occurs, so the strain profiles are unchanging for Q
> 0.89. /

L.oAD CONTRIBUTION OF LE FRAGMENTS

To obtain the total load on the unit cell, denoted 7, we
note that the total tension in each IE fiber in the unit cell
is E*A*(e + du, . /dx), where the & term occurs due to
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FIGURE 6. Fiber strain/nominal strain, 1 + U, . versus position £
for various Q. Thick line is LE fragment and thin line is the abutting HE
fiber (1,0). R = V5, k/k* = 1, and L = 2 for all cases.

the definition of the displacement reference. Evaluating
the load on the unit cell at &€ = 0 simplifies matters, since
the tension is zero on the LE fragment at the fragment
tip. The total load f on the unit cell is computed by
summing the HE fiber tensions at £ = 0 for the 2M
+ 1)® — 1 uE fibers in the unit cell. Using Equations 3,
f can be written as

f=E*A*s 3 (U, +1} . 19
HE fibers

The total load f does not give a direct indication of the
influence of the LE fragment, since f depends on the size
of the unit cell, specified by M. The load contribution of
the LE fragment f;  is sought by subtracting out the effect
of the HE fibers through the use of a comparison cell,
where the LE fragment has been removed and its position
left vacant. We note that the load on the comparison cell,
denoted fyy, 1s simply E¥A*g times the number of HE
fibers in the unit cell. The load contribution of the LE
fragment, defined by fig = f — fug, may be written,
using Equation 19, as '

fie=E*A%*s X U,,(0) . (20)
HE fibers

A convenient feature of f j; is that its value is a direct

measure of the effectiveness of the reinforcement pro-

vided by the fragments: when the value of f; . falls below

E*A*g, the fragmented blended fiber array carries less

load at a given strain than an array consisting only of HE
fibers.

The behavior of the LE fragment load contribution

with increasing @ is exhibited in Figures 7 and § for
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various fragment lengths. Results for various R are
indicated in Figure 7, and those for various A/k* are
indicated in Figure 8. Here, for moderate or large
values of Q, increasing the axial stiffness of the LE
fragment (decreasing R) significantly increases the
load contribution of the fragment, the effect becoming
most pronounced for fragment lengths of two or
greater. Increasing the stiffness of the shearing inter-
action between the L fragment and the HE fiber (in-
creasing k/k*) for moderate or large values of O also
increases the fragment load contribution, but to a
lesser extent than similar changes in axial stiffness,
The effect of increases in the stiffness of the shearing
interaction becomes most pronounced for shorter frag-
ment lengths. For small values of (), the LE fragment
load contribution depends only on fragment length,

1.4

Frgure 7, Load contribution of LE fragment for various fragment
lengths and R values (shown next to curves). k/k* is 1 for all cases.

fLE
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1 -

dotted line- B+ =3
solid fine- b&* = 1
shick solid line- k& = M3

0.5 1

BNy 05 1 1.3 2
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FIGURE 8. Load contribution of LE fragment for various fragment
lengths and k/k* values. Fragment length values L are shown next to
curves. R is ¥ for all cases.
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Discussion

We have investigated the post-fragmentation tensile
behavior of twisted hybrid yarns containing a small frac-
tion of LE fibers through a simple micromechanical
model of a unit cell. Our results suggest that the dimen-
sionless parameter O has a critical influence on the
degree to which behavior is governed by either elastic
interaction or frictional slip between the LE fragment and
surrounding 1 fibers. The value of ¢ may therefore be
a deciding factor in the success of particular hybrid yarn
designs and approaches taken to improve yam perfor-
mance. Strategies intended to increase yarn stiffness and
overall yarn tension during the fragmentation process by
tailoring the elastic properties of the 1E fibers, such as
increasing LE fiber axial stiffness, will be ineffective if
the prevailing Q values are too small, i.e, such that
behavior is dominated by frictional slip effects. When LE
fibers are intended to significantly reinforce the yarn in
the extension regime involving the LE fiber fragmentation
process, the value of @ must be sufficiently high such
that significant load transfer occurs between the fragment
and surrounding HE fibers. Figures 7 and 8 show that yarn
reinforcement by the Lt fragments, requiring the frag-
mented blended fiber array to carry higher loads at a
given strain than an all-HE fiber array (i.e., fig > E*A* g),
occurs for values of 0 in the fiber array greater than, say,
0.2. For smaller values of (, a homogeneous yarn con-
sisting of only HE fibers would carry higher loads in the
varn extension regime associated with LE fiber fragmen-
tation,

The helical fiber geometry resulting from yamn twist
has an important influence over fragment slip behavior.
In our model, slip frictional forces increase linearly with
increasing strain, so increasing tension in the fiber frag-
ment is balanced by increasing frictional forces. As a
result, the extent of the slipping region remains constant
with increasing strain, This is in contrast te models for
fibrous composites exhibiting frictional fiber/matrix in-
terfacial slip or matrix yielding near fiber breaks, where
slip or matrix yield is assumed to occur at a constant
stress, In those models, the extent of the slipping or
matrix yield zone grows roughly linearly with increasing
load (see, e.g., reference 9). Consistent with the strain
independence of the slip extent in our model, the param-
eter @ is also independent of the nominal strain in the
fiber array, at least to a first-order approximation. In
reality, @ is likely to be somewhat dependent on strain.
As the yarn is extended, increases in the packing density
of the fibers may bring additional fiber surfaces into
contact, increasing frictional forces at a rate higher than
in our model. This can be treated by considering the
coefficient of friction to depend on the strain level in the
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fiber array. For example, a judicious choice is
= poe”, where n is some positive fraction typically less
than 2, so that p becomes asymptotic to a constant value
at large strains as the packing density saturates.

We envision this model as a general framework to be
used in a semi-empirical approach to the study of frag-
mentation and failure processes in hybrid yarns. As such,
the critical parameter Q¢ will ultimately be calibrated
through appropriate experiments. Treating 0 as a param-
eter to be calibrated is particularly prudent, because its
definition in terms of microstructural propertics, Equa-
tion 12, includes a fiber-to-fiber shearing stiffness k% and
the in sitn coefficient of friction between HE and LE fiber
surfaces. Both these quantities are likely to be tenuous,
highly sensitive to the specifics of the yarn construction
at hand, and 50 not quantities that can be independently
measured.

It 1s worthwhile to use its definition to explore the
likely values of O as the fiber array properties are varied.
If we assume both fibers are approximately the same
diameter and are roughly circular in cross section, the
quantity A* is replaced by wd*/4, The stiffness of the
smeared fiber array, for fiber arrays with low concentra-
tions of LE fibers, can be approximated by the stiffness of
an array of all uE fibers, E = E*A%/d> = (7/4) E*.
Making these substitutions into Equation 12, we find that
Q = Vo 72y VE*/k*. This result suggests that in-
creasing the ratio of HE fiber axial and fiber-to-fiber
shearing stiffness, £*/k*, assuming yarn twist and fric-
tional behavior is unchanged, will increase the value of
0 within the yarn. Speculatively, HE fibers that have a
more highly oriented molecular structure will tend to
have higher E*/k* ratios and, other things being equal,
will yield blended yams with higher  values. The
dependence of ¢ on w1 is consistent with the familiar
expectation that increasing the yarn twist (increasing n)
will increase cohesiveness. Morton and Hearle [17, p.
419] tabulate the ratio of tensile to shear modulus for
some common textile fibers. Using these values, which
range from 3.2 for wool to 28 for a high-tenacity viscose
rayon, as a rough estimate for E*/k*, taking 1 = 0.3 and
n = 0.18, we may estimate Q values to be very roughly
in the range of 0.1-0.3. For high performance fibers,
Kevlar, for example, higher values of @ result (say,
0.4-0.7), since reported values of the tensile-to-shear
modulus ratio are in the 100 to 200 range [11].

Conclusions

We have developed a simple micromechanical mode}
for deformations in a fiber array representing the micro-
structure of a hybrid yarmn undergoing fragmentation of
the low elongation-to-break (LE) fibers during extension.
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The model can be used as an initial framework in a
semi-empirical approach to the study of bybrid yarn
fragmentation and failure processes. The parallel square-
stacked mixed array of elastic fibers consists of a small
fraction of relatively high modulus, LE fibers dispersed
among high elongation-to-break (HE) fibers. The LE fibers
are assumed to break into fragments that slip relative to
neighboring fibers in regions near the fragment tips;
literature results for yarn internal stresses are used to
motivate analysis of frictional slip forces. We use the
model to investigate the contribution of the LE fragments
to the load-carrying ability of the fiber array. Dimension-
less parameters involving elastic and frictional properties
of the fibers, properties of the fiber array, as well as yarn
geometry are identified and their influence on hybrid
varn tensile behavior is discussed. A key parameter O
has a crifical influence on the degree to which fiber array
behavior is dominated by either elastic or frictional slip
effects.
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