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Abstract

The dynamics of parachutes involves complex interaction between the parachute structure and the surrounding flow field. Accurate
representation of parachute systems requires treatment of the problem as a fluid-structure interaction (FSI). In this paper we present
the numerical simulations we performed for the purpose of comparison to a series of cross-parachute wind tunnel experiments. The FSI
model consists of a 3-D fluid dynamics (FD) solver based on the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST)
procedure, a structural dynamics (SD) solver, and a method of coupling the two solvers. These FSI simulations include the prediction
of the coupled FD and SD behavior, drag histories, flow fields, structural behavior, and equilibrium geometries for the structure.
Comparisons between the numerical results and the wind tunnel data are conducted for three cross-parachute models and at three
different wind tunnel flow speeds. © 2001 Published by Elsevier Science B.V.
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1. Introduction

In the past decade, the level of interest directed toward numerical modeling of parachute dynamics has
increased dramatically, partly due to significant advances in computational methods and computer hard-
ware. Parallel computing has seen major increases in computing power, memory, and computational
methods offering solutions to problems that were until recently impossible to address. The heightened
interest by the parachute community in numerical modeling, combined with advances in parallel computing
technology, is making 3-D flow simulations and coupled fluid-structure computations for parachutes a real
and legitimate compliment to experimental approaches (see [1-4]).

The US Department of Defense has recently focused attention towards designing a low-cost precision
airdrop system for resupply and humanitarian missions. The system will be deployed at altitudes up to
25,000 ft above ground level, with up to 2200 Ib. One proposed system will utilize a low-cost main cross
canopy in a reefed configuration as the drogue for the majority of the system’s descent. The system will
transition from drogue to fully open main parachute at a prescribed altitude prior to landing.

Clearly, comparing numerical data with wind tunnel and test drop data is beneficial to both computational
and experimental approaches in parachute design, because the process helps validate the computational
method while improving the qualitative understanding of several sources of wind tunnel systematic errors.
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As the starting point, a series of wind tunnel experiments has been performed to determine the stability,
shape, flow field, surface pressure distribution, overall drag and many other parameters associated with a
wide range of reefed and fully open cross-canopy configurations [5]. A subset of these wind tunnel ex-
periments involves fully open, scaled cross parachutes with varying suspension line lengths [6]. The cross-
parachute models present unique challenges due to their size and associated large wind tunnel blockage.
Structural dynamic (SD) models are being developed to investigate the proposed systems such as these
cross-canopy parachutes [7,8]. The main fluid dynamics (FD) model is based on the Deforming-Spatial-
Domain/Stabilized Space-Time (DSD/SST) finite element formulation [9,10] of the Navier-Stokes
equations of incompressible flows. The DSD/SST formulation, which was introduced earlier for flow
computations involving moving boundaries and interfaces, gives us the capability to handle parachute
structural deformations. Numerical simulations for the cross-parachute fluid—structure interaction (FSI)
are accomplished with an FSI model we developed, which couples the SD and FD models at the parachute
canopy. These methods have been tested on a variety of problems involving parachute deformations [1-3].
In this paper we present our FSI simulation strategy and the initial, first-order validations of the FSI
predictions by comparing them to the wind tunnel data.

2. Governing equations
2.1. Fluid dynamics

For the FD, the air flow is assumed to be at low speeds and thus the Navier-Stokes equations of in-
compressible flows are utilized. Let Q, C R™ and (0, T) be the spatial and temporal domains, respectively,
where n,, is the number of space dimensions, and let I', denote the boundary of ©,. The subscript “¢”
implies the time-dependence of the spatial domain. The spatial and temporal coordinates are denoted by
x = (x,y,z) and ¢ € (0, T). The Navier—Stokes equations for incompressible flows are:

p<%+u'Vu+f>—V~a:0 on £, ()
V-u=0 on Q, (2)

where p, u, f, and o are the density, velocity, body force, and stress tensor, respectively. For a fluid with
dynamic viscosity 4 and the strain rate tensor g(u), the stress tensor is defined as follows:

o(p,u) = —pl + 2ps(u), (3)

where 1 is the identity tensor. For the problems under consideration, u is augmented locally using a
Smagorinsky turbulence model [11]. The boundary I'; is composed of (I';), and (I',),, corresponding to the
Dirichlet- and Neumann-type boundaries, respectively. The initial condition on the velocity is specified as
u(x,0) = uy on £y, where u, is divergence free.

2.2. Structural dynamics

Let £ C R™ be the spatial domain bounded by I}, where n,;, = 2 for membranes and n,, = 1 for cables.
The boundary I'} is composed of (1), and (I7),. Here, the superscript “s” corresponds to the structure.
The equations of motion for the structural system are:

Sy dy .
p(v+ﬂa‘—f)—v0' =0, (4)

where y is the displacement, p° is the material density, f* are the external body forces acting on the structure,
¢* is the Cauchy stress tensor, and # is the mass-proportional damping coefficient. The damping provides
additional stability and has been added to problems where time-accuracy is not important.
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In the finite element formulation for the SD, we use a total Lagrangian formulation of the problem.
Thus, stresses are expressed in terms of the 2nd Piola—Kirchhoff stress tensor S, which is related to the
Cauchy stress tensor through a kinematic transformation. Under the assumption of large displacements
and rotations, small strains, and no material damping, the membranes and cables are treated as
Hookean materials with linear-elastic properties. For membranes, under the assumption of plane stress,
S becomes

57 = (InGIG" + 1, [G"G* + G*G"] ) Eu, (5)
where for the case of isotropic plane stress
- 22
T = 2 (6)
(Am + 21,)

Here, E;; are the components of the Cauchy—Green strain tensor, and 4,, and p,, are the Lamé constants.
For cables, under the assumption of uniaxial tension, S becomes

Sll :ECG”G“E”, (7)

where E. is the cable’s Young’s modulus. To account for stiffness-proportional material damping, the
Hookean stress—strain relationships defined by Egs. (5) and (7) are modified, and E, is replaced by £y,
where

Ek/ = Ey + (Ey. (8)

Here, { is the stiffness proportional damping coefficient and £, is the time derivative of Ej,.

3. Finite element formulations
3.1. Fluid dynamics

To handle the time-variant spatial domains encountered in parachute problems, we employ the DSD/
SST finite element formulation [9,10]. This method has been applied to a large number of problems with
moving boundaries and interfaces, and is well suited to handle the canopy shape changes.

In order to construct the finite element function spaces for the space-time method, we partition the time
interval (0, T) into subintervals I, = (¢,,t,,), where ¢, and ¢,,, belong to an ordered series of time levels
O=th<ti<---<ty=T.Let Q,=Q, and I', =TI',,. We define the space-time slab Q, as the domain
enclosed by the surfaces Q,, Q,. 1, and P,, where P, is the surface described by the boundary I, as ¢ traverses
I,. As it is the case with I',, surface P, is decomposed into (£,), and (P,), with respect to the type of
boundary condition (Dirichlet or Neumann) being imposed. For each space-time slab, we define the
corresponding finite element function spaces (¥%),, (¥1),, (y;)n, and (¥ Z)n. Over the element domain, this
space is formed by using first-order polynomials in space and time. Globally, the interpolation functions are
continuous in space but discontinuous in time.

The DSD/SST formulation can then be written as follows: given (u")_, find w' € (¥!), and p’ € (Sﬁz)n
such that Yw" € (¥7), and ¢" € (¥7),

/wh~p<6—uh+uh-Vuh+f") dQ+/ s(wh):a(ph,u”)dQ+/ q'V-u"dQ

ot y '
. T ow' b P ', W e Y
+; Lﬁ;[ﬂ(w—i—u - Vw ) —V.a(q , W )] . [p<_67+u .Vu' +f > —V~a(p ,u) do
Rel
+z 5V.whpv-uh dQ+/ (wh):'p((uh):—(uh);) dQ:/ wh . h" dp. )
e=t IO & (Pu)y
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Here, the superscript “e” refers to the element level, and 7 and é are the stabilization parameters. This
process is applied sequentially to all the space—time slabs Oy, Q1, O, . .., Ov_1. The computations start with
(u”)a = WUy.

In the variational formulation given by Eq. (9), the first three terms, the sixth term, and the right-
hand-side constitute the Galerkin formulation of the problem. The first series of element-level integrals in
Eq. (9) is least-squares terms based on the momentum equation. The second series of element-level in-
tegrals is the least-squares terms based on the incompressibility constraint, and is added to the formu-
lation for numerical stability at high Reynolds numbers. Both stabilization terms are weighted residuals,
and therefore maintain the consistency of the formulation. Since the interpolation functions are dis-
continuous in time, the sixth term weakly enforces continuity of the velocity field across the space-time
slabs.

3.2. Structural dynamics

A semi-discrete finite element formulation for the SD equations of motion is obtained using the principle
of virtual work. Finite displacements of the structure are taken into account by using a total Lagrangian
description of the problem:

d’y"

h
/ o —— w'de* +/ np'YdL -w'de +/ S':SE(W) A2 = [ (t+ p'f) - W de. (10)
g O g A % o

Here, the weighting function w” is also the virtual displacement. The air pressure contribution is represented
by vector t. The pressure term is a “follower force” (since it “follows” the deforming structural geometry)
and thus increases the overall nonlinearity of the formulation. The left-hand-side terms of Eq. (10) are
referred to in the original configuration and the right-hand-side terms for the deformed configuration at
time 7.

Upon discretization using appropriate function spaces, a nonlinear system of equations is obtained at
each time-step and can be written in the incremental form as

M (d-apC I _Ri
A7 BAr +(1—oc)K]Ay_R, (11)

where
C=yM+ (K. (12)

Here, M is the global mass matrix, C is the damping matrix, K is the stiffness matrix, R’ is the residual
vector at the ith iteration, and Ad' is the ith increment in the nodal displacement vector d. In Eq. (11), all
of the terms known from the previous iteration are lumped into the residual vector R'. The parameters
a, B,y are part of the Hilber-Hughes—Taylor [12] scheme which is used here to advance the solution in
time.

3.3. Mesh generation and update strategy

Automatic unstructured mesh generation and automatic mesh moving schemes are used to handle the
complex geometries and arbitrary deformations of the parachute canopy. These schemes introduce an
increased computational cost since they involve automatic 3-D mesh generation and require the solution of
an additional system of equations for the mesh motion. However, these methods are well suited for han-
dling complex geometries and arbitrary motions for this class of problems. In this scheme, we treat the fluid
mesh as a linearly elastic “pseudo-solid” that deforms as dictated by the motion of the surface boundaries
of the fluid domain [13,14].
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4. Problem setup

The FSI strategy consists of three components: the FD solution, the SD solution, and the coupling of the
FD and SD along the fluid-structure interface. Prior to performing the FSI simulations, near equilibrium
conditions for both the fluid and structure are obtained. Thus, the FSI simulation process consists of three
main stages. Firstly, the SD model is generated from cut patterns of the wind tunnel parachute model and
stand-alone simulations are performed using a static prescribed pressure distribution. Secondly, the re-
sulting geometry from the SD simulation is used for computation of the unsteady flow field for that fixed
parachute shape. Thirdly, the results from this flow simulation are used as the start-up condition for the
FSI simulation in which the parachute is allowed to go through geometric changes.

4.1. SD model

Three cross-parachute wind tunnel models are considered. The models are each composed of a canopy
section, which is constructed out of five panels (each one square foot and made of a low-porosity material),
20 suspension lines, reinforcements along the seams in the canopy (which extend from the suspension lines
through the canopy), and reinforcements at the outer edges of the canopy between the suspension line
attachment points. Each of the 20 suspension lines has the same length. This length is 50 in. for the first
model, 45 in. for the second, and 40 in. for the third. The SD model of the canopy portion of the parachute
consists of nine-noded membrane elements. The suspension lines and reinforcements are represented with
two-noded cable elements. The composition of the base parachute model (with 50-inch suspension lines) is
shown in Fig. 1 in a “blown-out” view. Here, the lower set of lines represents the suspension lines, the
middle mesh section represents the cross canopy, and the upper set of lines represents the reinforcements in
the canopy along the seams and outer edges. The inner three suspension lines for each arm of the cross
parachute are constructed in a kinked configuration (as depicted in Fig. 1) so that each of the suspension
lines has an identical unstretched initial length of 50 in.

Fig. 1. Cross parachute constructed configuration.
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The base wind tunnel model has a total weight of 0.50 Ib. The suspension lines, canopy, and rein-
forcements, respectively, constitute approximately 0.23, 0.06, and 0.21 Ib of the total weight. The material
properties for the SD model are shown in Table 1. These values were selected to represent the wind tunnel
model. Material densities were selected based on the assumed membrane thickness and cable areas to satisfy
the known weight for the corresponding material groups. Linear-elastic material stiffnesses were defined to
result in, for the inflated configuration, membrane and cable strains of approximately 1%. Thus, Young’s
moduli selected for membrane and cable materials are approximate, but representative of the cross-para-
chute model.

The base SD mesh consists of 5694 nodes, 1280 nine-noded membrane elements for the canopy surface,
and 1488 two-noded cable elements for the suspension lines and canopy reinforcements. The suspension
lines connect to a single confluence point, which represents the fixed attachment point in the wind tunnel
test section. This SD mesh results in 17,079 equations.

The base model is allowed to inflate when the canopy is subjected to a prescribed nondimensional
differential pressure (Ap/p¥?2) of 1.0, where Ap is the canopy differential pressure, V. is the wind tunnel
velocity, and p is the density of air. The fully inflated equilibrium configuration for the base model is
obtained with a damped, dynamic SD simulation and is shown in Fig. 2. Maximum principal stresses for
the parachute canopy (membrane) are superimposed on the surface, with dark regions representing the
low stresses (predominant along the canopy reinforcements) and light regions representing the high
stresses. This equilibrium solution is used for defining the parachute canopy configuration in the FD
model.

The SD mesh for the base model with 50-inch suspension lines is also used to define the SD models with
45-inch and 40-inch suspension lines. This is accomplished by “shrinking” the suspension lines by 5 and 10
in. in order to represent the 45-inch and 40-inch models, respectively. The shrinking is accomplished by
redefining the natural lengths of the suspension line cables during dynamic stand-alone SD simulations
[3,7]. The internal stresses in the cables are computed throughout the simulations based on the time-variant
natural lengths. Inertial and gravitational terms are computed based on the initial lengths of the cables.
Thus, the total mass of the SD models remains constant during the simulations. As the line shrinking is
imposed, the 45-inch and 40-inch SD models are allowed to reach static equilibrium.

Table 1
Cross parachute: material properties
Membranes Cables
Material group:  Canopy Suspension lines Seam reinforcements Edge reinforcements
Thickness (area) 0.0001 ft 0.0001 ft? 0.0001 ft 0.0001 ft*
Density 3.75 slugs/ft’ 0.85 slugs/ft’ 2.0 slugs/ft’ 2.0 slugs/ft?
Young’s modulus 2 x 10° Ib/ft? 5.0 x 10° Ib/ft? 2.0 x 10° Ib/ft? 3.0 x 10° 1b/ft?
Poisson’s ratio 0.3 - - -

Fig. 2. Fully inflated configuration: 50-inch suspension line model.
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4.2. FD model

The FD model is developed to be representative of the wind tunnel, which has a (28 in. x 39 in. x 54 in.)
test section. The length of the test section is extended to the FD model to make sure that there will not be
any reverse flow at the outflow boundary. The numerical model consisting of the test section and parachute
canopy is shown in Fig. 3. The dashed lines represent the diverging boundaries of the wind tunnel
downstream from the test section. An unstructured triangular surface mesh is generated for the fluid do-
main, representing the deformed canopy from the SD solution as an interior boundary. The canopy surface
unstructured mesh for the inflated canopy is generated by first generating a mesh for the flat canopy, and
then projecting the displacements from the SD simulation (with a structured mesh) onto the flat un-
structured mesh.

This process is depicted in Fig. 4 with the flat surface mesh (upper left), the deformed SD canopy mesh
with nine-noded membrane elements (upper right), and the deformed surface mesh (bottom). It should be
noted that each panel in the canopy surface mesh was meshed separately in order to maintain a set of edges
that define the reinforcements along the seams of the cross canopy. In addition to the outer boundaries and
the canopy boundary in the FD model, an internal “refinement boundary” mesh is generated in the canopy
wake region to control the level of refinement. The refinement boundary is represented by the dotted lines in
Fig. 3. The complete surface mesh of the FD domain, which is sued to generate a 3-D tetrahedral volume
mesh, is shown in Fig. 5 for the 50-inch SD model. For this mesh, the canopy surface is split into different,
but co-located upper and lower surface nodes. This mesh generation process is performed for each of the
SD models.

The initial unsteady flow solutions were obtained for the fixed-canopy configurations using a stabilized
semi-discrete formulation for the FD equations [15]. This semi-discrete formulation is less cost-intensive
than the DSD/SST formulation and is adequate for the stand-alone simulations since there is no time-
dependence in the spatial domain (i.e., no deformations of the canopy). After the flow is developed, several
time-steps were computed using the DSD/SST procedure to obtain starting FD conditions for the FSI
simulations.

The boundary conditions for the FD simulations are defined to approximate the conditions of the wind
tunnel: the inflow boundary is assigned a prescribed velocity condition, with constant velocity of 40, 60, or
80 miles/h; the side boundaries are assigned free-slip conditions; and the outflow boundary is assigned
traction-free conditions. A zero-porosity condition is approximated for the cross-parachute canopy surface
by assigning no-slip conditions. The free-slip conditions on the side boundaries used in the simulations

——39in —

©

B

Fig. 3. Cross-parachute wind tunnel test: numerical FD domain.
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Fig. 5. Cross parachute: surface mesh of FD domain.

assume no interaction between the canopy and the wall boundary layer. Starting flow conditions are ob-
tained for each FD mesh and for each inflow velocity.

4.3. Fluid—structure coupling

In direct coupling approaches, all fluid and structural variables are updated simultaneously by solving a
single coupled system of equations. Implementation of a directly coupled solver can be overly burdensome
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and for this reason we implement an “iteratively coupled” approach. Here, all variables are updated
separately in a “staggered” fashion, within the nonlinear iteration loop, by solving individual systems of
equations for the fluid and structure. Coupling is achieved through the transfer of FSI information between
the fluid and structural solvers prior to the updates. This information is transferred along the fluid—
structure interface. The displacements from the SD solution are used to update the fluid mesh. Iterative
coupling approaches have been demonstrated in [1,2,16,17].

In the simulations, it is assumed that the suspension lines and the wind tunnel mounting hardware have
no effect on the flow field. Simple line drag approximations are imposed as forces in the SD model. Thus,
FSI coupling occurs over the cross-parachute canopy surface. The cross-canopy surface meshes for the FD
and SD models are incompatible (i.e., nodally inequivalent, different element types), as depicted in Fig. 4.
This approach has the benefit in that it allows for individual FD and SD meshes to be designed, with
different element types, to take advantage of the strengths of each solver. However, incompatible meshes
require a more complicated projection scheme for the transfer of information across the fluid—structure
interface. Coupling information is transferred between the incompatible surface meshes by a least-squares
projection scheme as described and demonstrated in [2,3,18]. Here, surface pressures from the FD solution
are projected from the triangular FD surface mesh to the integration points of the nine-noded membrane
elements in the SD mesh. Likewise, canopy displacements and displacement rates from the SD solution are
projected from the SD mesh to the FD mesh. Canopy displacements from the SD computations are used as
Dirichlet boundary conditions in the pseudo-solid automatic mesh moving strategy. The displacement rates
from the SD computation are used to impose the no-slip boundary conditions on the canopy surface in the
FD simulation.

5. Results

The time-averaged drags computed from the FSI simulations and measured from the wind tunnel ex-
periments are summarized in Table 2 and compared in Figs. 6, 7. Fig. 6 shows, for inflow velocities of 40
and 60 miles/h, the computed and measured drags as a function of suspension line length. Fig. 7 shows, for
two cross-parachute models, the computed and measured drags as a function of inflow velocity. For the
plot on the right side of Fig. 7, the suspension line lengths for the FSI and wind tunnel models differ by 1
in., with the FSI model having 50-inch lines and the wind tunnel model having 51-inch lines. The plots in
Figs. 6 and 7 show good agreements in the drag trends and have errors ranging from 3% to 10%.

Shape comparisons were made for the cross parachute with 50-inch suspension lines at tunnel speeds of
40 and 60 miles/h. Fig. 8 shows, for 40 miles/h, a qualitative comparison of the predicted configuration for
the inflated canopy from the FSI simulation (left) and for the wind tunnel experiments (right). The pro-
jected width of the center panel of the canopy was also measured. Measurements from video data showed

Table 2
Cross-parachute drag
Simulation number Cross-parachute model Tunnel speed (miles/h) Drag
FSI (Ib) Experiment (Ib)
1 50-inch lines* 40 42.8 44.0
2 50-inch lines* 60 96.0 107.0
3 50-inch lines 80 170.5 -
4 45-inch lines 40 41.2 -
S 45-inch lines 60 92.6 -
6 45-inch lines 80 164.5 -
7 40-inch lines 40 39.6 41.0
8 40-inch lines 60 88.7 94.0
9 40-inch lines 80 157.5 -
10 28-inch lines 40 - 32.0
11 28-inch lines 40 - 62.0

" The experimental model had 51-inch lines.
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projected widths of 11.5 £ 0.3 and 11.2 + 0.3 in. for tunnel speeds of 40 and 60 miles/h, respectively. Av-
erage computed values for the projected widths were approximately 11.7 in. for both tunnel speeds. The
deviations between the simulation and measured values are small and are most likely due to a combination
of simulation approximations and measurement errors.

Several flow snapshots from the FSI simulation for the 50-inch suspension line model with an inflow of
40 miles/h are shown in Figs. 9-11. These snapshots all correspond to the same instant in time. The figures
show the nondimensional pressure (5 = (p — px)/pV?) and velocity magnitude (V = ||u||/V..), where p,. is
the ambient pressure. For each of the snapshots in Figs. 9-11, the contour interval is 0.1 for pressure and
0.25 for velocity. Fig. 9 shows the p- and V-contours at vertical cutting planes parallel to the inflow velocity.
The four planes are positioned from the tunnel midplane (location=14.0 in.) to the tunnel wall (loca-
tion=28.0 in.). Fig. 10 shows the p- and V-contours at horizontal cutting planes parallel to the inflow
velocity. The four planes are positioned from the tunnel horizontal midplane (location=19.5 in.) to the
tunnel ceiling (location =39.0 in.). For the contours at the ceiling and side tunnel boundaries, boundary

14.0 inches 18.7 inches 23.3 inches 28.0 inches

Fig. 9. Contours of pressure (top) and velocity magnitude (bottom) in vertical cutting planes.
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layer effects are neglected due to the free-slip boundary condition, and the V-contours represent the
magnitude of the slip velocity along the wall. Significant blockage effects are evident due to having a rather
large parachute in a small wind tunnel. As expected, blockage effects are more severe across the 28-inch
width than up through the 39-inch height of the test section. This is very apparent for the flow values on the
test section walls, where the blockage due to the cross canopy has a greater impact on the side walls (Fig. 9,
right) than on the floor and ceiling (Fig. 10, right). Fig. 11 shows the p- and V-contours at cutting planes
across the tunnel and normal to the inflow velocity. The positions of the cutting planes are labelled relative
to the connection points between the canopy and suspension lines. The left frame (—3.8 in.) is located
upstream of the canopy. The other three cutting planes cut through the canopy surface, with the pressure
contours ending at the canopy surface due to the pressure discontinuity across the surface. For the model
with 50-inch suspension lines, the differential surface pressures from the FSI computations are compared
with data from the wind tunnel experiments. The wind tunnel measurements yielded average differential
pressures at four stations on the side of the canopy facing the ceiling of the wind tunnel test section. The
four pressure ports were positioned along the center of the canopy, ranging from 1 in. from the canopy skirt
to the apex (i.e., 18 in. from the skirt) (see Fig. 12). Average computed values were extracted from the
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Fig. 12. Location of pressure port stations.

simulation data at corresponding locations in the FD mesh, and the comparisons between the measured
and computed data are illustrated in Table 3. Here, differential pressures are shown in psi and for tunnel

speeds of 40 and 60 miles/h.
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Table 3
Cross parachute: differential surface pressures in psi

Station  Distance from skirt (in.) FSI 40 miles/h Tunnel 40 miles/h FSI 60 miles/h Tunnel 60 miles’h

1 1.0 0.110 0.123 +0.021 0.248 0.306 + 0.021
2 5.5 0.110 0.102 £ 0.010 0.248 0.249 £ 0.010
3 11.0 0.124 0.106 + 0.008 0.280 0.259 + 0.008
4 18.0 0.121 0.099 £0.014 0.280 0.243 +£0.014

6. Concluding remarks

Preliminary FSI simulations have been performed to numerically model a series of wind tunnel exper-
iments with cross parachutes. The comparisons between the computed results and the wind tunnel data
involve drag behavior, inflated shapes, and differential surface pressures. These preliminary simulations and
comparisons establish significant confidence in our numerical model and are quite promising. The nu-
merical model is being further refined to more precisely represent the physical test setup, and additional
experiments are being conducted to further correlate comparisons between the numerical model and the
physical experiments.
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