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ABSTRACT

A previously developed micromechanical model is used to formulate the problem of a
blended yarn, consisting of low elongation (LE) and high elongation (3E) fibers undergoing
axial extension, with a fiber break in the central region of the hybrid fiber array. A hybrid
parameter R, which is the ratio of the axial stiffness of the HE fibers to that of the LE fibers,
is shown to have an important effect on the intact fiber stress concentration factor (SCF),
and the broken fiber slip extent at the fiber break, While the scr increases for HE fibers
adjacent to broken LE fibers, it decreases for LE fibers adjacent to broken HE fibers as R

_takes on values away from unity (homogeneous yarn). Higher loading can therefore be
sustained by the LE fibers, and a beneficial hybrid effect can be realized.

Blended or hybrid yarns, which consist of more than
one kind of fiber, have been produced to develop im-
proved strength and stiffness over what can be achieved
in homogeneous yarns. This so-called hybrid effect has

been observed in hybrid composite sheets [2, 14], indi-

cating how higher loading and elongation can be sus-
tained by high modulus (low elongation, LE) fibers than
when they exist alone in a nonhybrid composite. The
same effect appears to be possible for blended yarns.
This is corroborated by our current results, which show
that the stress concentration factor (SCF) of an LE fiber
next to a broken HE (high elongation) fiber decreases,
while the scF of an HE fiber next to a broken LE fiber
increases with decreasing values of the hybrid parameter
R, the ratio of the axial stiffness of the HE to that of the
LE fibers. This has a positive effect for yarns where the
principal fibers are particular LE fibers, which are se-
lected to be stronger than the dispersed HE fibers. It
suggests that if a reduction in the SCF of the principal LE
fiber has a dominant effect on yarn strength compared
with the increased scrk of the HE fiber (since the HE fiber
has a larger failure strain), a hybrid effect can be realized.

Near a fiber break, the neighboring fibers will slip, and
the slip extent plays a role similar to the yield zone in the
matrix near a fiber break [14] in fiber composites. We
will show here how the SCF decreases with larger slip
extents, supporting the notion that a slip acts as a dissi-
pative mechanism, similar to matrix yielding in fiber
composites.
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In general, twisted fibrous structures, including yarns,
ropes, and cables, exhibit transverse compressive forces
induced by the remote tension along the yarn axis. Each
fiber executes a quasi-helical path through the yarn, so
that a radially outwardly directed, distributed reaction
force from underlying fiber layers balances the tension
on the curved fiber. The compressive forces that occur
permit load transfer between abutting fibers through fric-
tion and give the yarn cohesiveness. With increasing
yarn tension, transverse compressive forces also in-
crease, thereby increasing the magnitude of the frictional
load transfer between fibers. This mechanism, first noted
by Galileo [3], is particularly important in stroctures
twisted from short plant and animal fibers (i.e., staple
yams), which rely entirely on fricticn for structural in-
tegrity. The induced transverse compressive forces in our
work are important in providing the frictional forces at
slipping contact surfaces between LE and HE fibers near a
fiber break.

In representative past work on yarn stress analysis,
Hearle {7, pp. 175-212], Kilby {9], and Thwaites [15, 16]
treated a helical element of the twisted yarn, parallel to
the local filament direction, as a continuum with a variety
of simplifying assumptions for the constitutive behavior
of the packed fibers. As such, the main concern is with
deformations that may be considered homogeneous over
large number of fibers, and so no attention is given io
problems of broken fibers. However, the results for yarn
internal stresses obtained in these studies motivated our
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model used for frictional load transfer at slipping fiber
contact surfaces in the analytical treatment of broken
fibers (Godfrey and Rossettos [5]). There, we showed
how broken LE fiber fragments continue to contribute to
the load-carrying ability of the fiber array [5]. Our focus
here, however, will be on the stress concentration (SCF)
near a fiber break, which not only gives load sharing (by
adjacent fibers) information used in strength prediction,
but provides a means of evaluating the hybrid effect.

Past work on strength prediction has emphasized the
stochastic aspects of the failure process, from the early
work of Daniels [1] to representative recent work by
Phoenix [11], Pitt and Phoenix [12], and Realff e ai.
[13], who provided a particularly important contribution
to the failure of blended yarns. We discussed these works
and related literature involving statistical theories for the
mechanical behavior of fibrous composites in earlier
work [5], so we will not pursue this topic here.

In this paper, we formulated a micromechanical model
for a blended yarn consisting of LE and HE fibers under-
going axial extension, with a fiber break in the central
region of the hybrid fiber array. The configuration of the
fiber array contains the same number of HE and LE fibers.
We show that the stress concentration in the fiber adja-
cent to the break will depend, in an important way, on
whether the broken fiber is g or LE. The analysis of
frictional slip forces acting in the slip region in fibers
near the break is motivated by results for yarn internal
stresses [7, pp. 175-212]. The model we develop in this
paper has a mathematical structare similar to Hedgepeth
and Van Dyke’s [8] shear-lag model for a three-dimen-
sional fiber composite. In the composite case, load trans-
fer takes place by shear of the matrix phase. For packed
fiber arrays in hybrid yarns, load transfer occurs through
geometric changes in the fibers and surface friction. The
model leads to a system of second-order differential
equations, which we have solved by an eigenvector ex-
pansion approach [4, 5]. We obtain solutions in each of
two regions, a region where slip occurs between fibers
and one where there is no slip. We then apply appropriate
continuity and boundary conditions in the cases consid-
ered.

Analysis
MICROMECHANICAL MODEL

In our model of a twisted yarn, which is assumed to
have a well accepted idealized helical structure [7], the
fibers follow helical paths and lie in co-axial concentric
layers. In the central region of the yarn, however, the
fibers are nearly paraflel to the yarn axis, and they
experience the highest strains during yam extension.
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Since rupture usually starts in the ceniral region, we base
our model in this region.

Previously, we indicated [5] that square packing pro-
vides an effective model for real fiber packed within
yarns. Therefore, near the yarn’s center, the microstruc-
ture is represented by a square-stacked mixed array of
paraliel, linearly elastic fibers. Also, our model assumes
roughly similar cross-sectional dimensions for HE and LE
fibers, to the extent that approximately square packing
can be achieved.

We derive the equations of our model by considering
an equal number of HE and LE fibers. A typical finite array
is shown in Figure 1. The fibers are numbered (n, ),
where # is the column number and m is the row number.
In Figure 1, the shaded fibers are LE and the blank fibers
are 1E. The center fiber (0, 0) in Figure 1 is an HE fiber
and will be considered broken in the development to
follow. The array is extended in the x-direction to a strain
€. It is convenient to take as the displacement reference
the position of points on an undamaged fiber array under
the same strain. Note also that the square region in Figure
1 exhibits eight-fold symmetry, and this will reduce the
number of equations needed in the analysis.

Ficure 1. Numbering scheme for finite section of fiber array;
LE fiber shown shaded. -

No Svir BETWEEN FIBERS

The general form of the equilibrium equation for an
(n, m) fiber can be derived as follows (see unit cell in
Figure 2a): For equilibrium, it is necessary to consider
the shear forces (surface friction between fibers) acting
on the (n, m) fiber from its four abutting fibers in Figure
2. Accordingly, we define “shear flow” as the shear force
per unit length, and assume [5] it is proportional to the
difference in the displacement of the two abutting fibers.
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FIGURE 2. {(a) n, mth fiber and abutters, (b) n, mth fiber equilibrium.

For instance, the shear flow g, ,..;” caused by the (n
4+ 1, m) fiber on the (n, m)th fiber is taken as

qn,u+1m = k(ur:+1,1u - un.m . (1)

In the shear flow notation, superscripts denote row
numbers and subscripts denote colurnn numbers. Also,
the displacement pattern is taken so that the shear forces
on the (n, m) fiber by the (n + 1, m) and (n, m + 1)
fibers in Figure 2a are in the positive x-direction, while
the forces on the (n, m) fiber by the (n — 1, m) and (»,
m — 1) fibers are in the negative x-direction. We use
notation where E*A* and EA are the effective axial
stiffness of the HE and LE fibers, respectively. Introduce
U, as the axial (x-direction) displacement of fiber (n,
m) at position x. If (n, m) is an HE fiber, then in Figure
2b, dF = E*A*(d’u,, ,/dx")dx. Also, Zq involves four
terms that can be written in terms of displacements nsing
Equation 1. Equilibrium for fiber (#, m) can then be
written as

2
d Upnm

E*A* W + k(un+],m - urz,m) - k(un,m - urr*l,m)

F k(s = ) = Kty — typ—1) =0 . (2)
Nondimensional quantities £ and U, ,, are defined by
x = E*A*IkE, U, = eJE*A*kU,, . (3)
Equation 2 can then be written as
Ut Wporm = Ui + Uy + Upuer — 4U)
=0 ., &

where primes denote differentiation with respect-to & It
is instructive to write equations for fibers (0, 0), (1, 0},
and (1, 1). Using Equation 4 to write the equation for
fiber (0, 0) and noting the symmetry in Figure 1, where
Ups = Ui = ULy = Uy _;, we write

3,0 + 4(U1,0 - Uo,a) =0 . (5}

In a similar fashion, we obtain the equation for fiber (1,
1) from Equation 4 by noting that U, , = U, ; and Uy,
= U, g, which gives

r{,l + (2U2,1 + 20U, - 4U1,1) =0 . (6)

Since fiber (1, ) is an LE fiber, its equation takes on a
slightly different form than Equation 4. Its equilibrium
equation (using u; _, = u,; from symmetry) is given
by '

EAd u, ofdn* + ki — Saey + kg + 2k, =0 . (D)

Using Equation 3, we can write Equation 7 in a nondi-
mensional form as

Yo+ RUsp + 22U + Uppy —4U,0) =0, (8)

where R = E¥A*/EA. The parameter R (the ratio of HE
to LE fiber axial stiffness) has been used in the hybrid
composite literatare [2, 14] and plays an important role
int our paper. R is equal to 1 for nonhybrids and takes on
fractional values in the range s = R = 1 for blended
(hybrid) yarns.

FrictioNaL SLP OF BROKEN FIBERS

Assume slip occurs between the broken HE fiber and
the abutting LE fibers (Figure 1) near the break in the
region 0 = x < a. For the HE fiber (0, 0), equilibrium
gives

E*A*dPuy fdx* — 4g,= 0 &)

where g, is the shear flow (shear/unit length) along the
contact line. If we define a shear parameter (J by

qs
= 10
g € kE*A® (10)
and use Equation 3, Equation 9 becomes
Ut —40 =10 {11)

For the LE fiber (1, 0), slip occurs along the contact
line with the HE fiber (0, 0), but there is no slip between
it and the other three abutters. Writing the eguilibrium
equation and using symmetry, so U, _, = U, ;, we can
derive the nondimensional equation as

Tot+ R(U,o—3U,n+2U, ) +RG=0 (12)
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For the ue fiber {1, 1), there are no slip surfaces, so
equilibrium gives an equation identical to Equation 6.

In earlier work [5], we developed an expression for the
shear flow g,, where we assumed (a fairly good approx-
imation of) equal radial and circumferential stress com-
ponents for most of the yarn interior. We assumed that
the lateral “hydrostatic” stress o experienced by the fiber
is the product of the axial stress in the fiber array o, and
a function m of the yarn surface helix angle and the radial
position of the fiber array within the yarn. Thus, the
lateral stress is given by o = — Een, where E is the axial
stiffness of the fiber array. Denoting the average fiber
spacing as d, Admonton’s law requires that g,
= —udo, where . is the coefficient of friction between
slipping fiber surfaces, so that g, is written as g
= pdEen.

It is reasonable to expect that ¢, should increase with
strain, with the particular increase leveling off as the yarn
approaches a taut condition. This effect can be repre-
sented in the analysis by assuming that u varies as
po/€”, so that the shear flow g, can be written as

(13)

where i, is a constant and the friction index # can take
on fractional values. We use values of n ranging from 0.5
to 0.9 in these results, and the principal conclusions of
this paper about the hybrid effect are not affected for
such variations in n. We next define a nondimensional
shear flow by g, = q,/podEn. When plotted against
strain €, the quantity g,, as indicated in Figure 3, ap-
proaches (asymptotic) taut condition values more steeply
when n = 0.9 than say when n = 0.5 for example.
Values of n at the higher end (n = 0.9) represent stiffer
yarns where tautness oceurs at lower strains. Values ofn
at the lower end (n = 0.5) represent more flexible yarns.
As we will show, our results for the stress concentration
factor are in qualitative agreement with those for hybrid
fiber composite sheets [14], where the frictional slip zone
in the yam for our case, and the plastic yield zone in the
matrix of the fiber composite sheet, play similar roles.

g, = modE€ ™™

NONDIMENSIONAL FIRER LOADS

We denote by p,, ,, and p’ . the change in loads in
the 1E and HE fibers, respectively, due to a fiber break.
Far from the break, these loads are denoted by p and p*,
respectively. Dimensionless loads P, ,, and P}, are
then defined by

(Pums Do) = P¥(Prmr P

We assume a uniform strain far from the break (at x
= ), so that the strain there can be written as €
= p*/E*A* = p/EA. The total load in, say, the HE fiber
adjacent to the break is then given by p* + P e where

(14)
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FiGure 3. Shear flow parameter 7, versus axial strain € for varions
values of friction index #.

p* is the reference load before the break. Noting that
p* . = E*A*du’ /dx, and using Equations 3 and 14,
the total nondimensional load for the HE fiber can be
written as

Pl.=1+U., (15
Note that, by definition, %, = p% /p* is, in fact, the
stress concentration factor (SCF). Because of the assump-
tion of uniform strain far from the break, we obtain the
same expression as the right-hand side of Equation 15 for
the scr of an LE (r, m) fiber adjacent to an HE fiber break.
In earlier work [6], we derived a similar equation with
regard to damage growth in stressed fabrics.

With the expression for g, given by Equation 13 and
noting that the strain € = p/EA, the quantity @ in
Equation 10 can be written as

podEn(EA)"
= 16
0= A (16)

BOUNDARY VALUE PROBLEM

Becanse of the eight-fold symmetry in the square
region unit cell of fibers lying in the rows and columns
numbered —M through M, we need only write equations
for fibers in a right triangular wedge. This is shown in
Figure 1 for the case M = 3. For a sufficiently large M
[5], we assume that the outer boundary of the square
region is free of any shear flows arising from interactions
with fibers lying in the M + 1 and M — 1 row or
column. Tt turns out that choosing M = 2 or 4 makes a
negligible difference in the results, indicating that the
significant deformations occur near the broken fiber.




ApriL 2002

Although we derived equations here for only the cen-
ter HE fiber (0, () and its neighboring fibers (1, 0) and (1,
1)—FEquations 5, 6, 8, 11, 12-—we can develop the
equations for the remaining fibers in the wedge region in
a similar and straightforward manner.

Slip will occur between the broken HE fiber (0, 0) and
its LE abutters (Figure 1) in a region 0 = x < g, where
a is the extent of the slip region. The corresponding
dimensionless slip region extent is denoted by «, where
a = VE*A*/ka, using Equation 3. The unit cell is
divided into region I, 0 = £ < @, where slip occurs, and
region II, @ = §, where no slip occurs. The system of
equations in region [ consists of Equations 11, 12, and 4,
specialized as needed for each of the remaining fibers in
the wedge. In region II, the system of equations includes
Equations 5, 8, and 4, specialized as needed for each of
the remaining fibers in the wedge.

The general boundary conditions and continuity con-
ditions to be applied are given as shown below. Since the
system of equations contains constant coefficients, the
general solution for the nondimensional displacements
will include both positive and negative exponentials.

In region I, at x = 0, fiber (0, 0) is stress free (broken)
so that P, = 0. Using Equation 15, this gives

Upo=—1 . a7

We showed similar boundary condition in more detail in
earlier work [6]. For the intact fibers, § = 0 is also a
plane of symmetry, so that

U0y =0, (n,m)#(0,0) (18)

In region II where £ > «, we must drop positive expo-
nentials to satisfy conditions at £ = %= (i.e., far from the
break). Since all fibers are continuous at £ = «, the
following continuity conditions hold, where superscripts
I and 1T refer to solutions in regions I and II, respectively:

U@ = U, (e2), (19)

An additional condition arises from the assumption that
slipping is approached in a continuous manner—the shear
flows on the broken fiber in the nonslipping region
approach those in the slipping region as £ — a. Using
Eguations 5 and 11, we can write this condition

Q= {Uo,on(ﬂf) - U1_0H(CE)}

The system of equations in regions 1 and If is written
in matrix form, and solutions in each region are obtained
using an eigenvector expansion technique, as described
in detail for a similar boundary value problem in earlier
work [4, 6]. We complete the solution process by select-
ing values of the slip region extent « (this defines the two
regions) and determining the values of the integration
constants and parameter (), such that the boundary and

U, Na) = U, M)

(20)

continuity conditions, Equations 17-20, are satisfied Ra
sults for the stress concentration factor: (SCF) ‘and. sli
extent will be plotted against the parameter p/p I wherc‘:-'
Py is the applied load far from the break that just starts
skipping, and p is the corresponding current load above
that value. We can obtain the ratio p/p; from Equation
16, where (2 is proportional to 1/p” for fixed material and
geometric properties. Therefore, we get

P ( QL)
PL o ’
where (J; is the corresponding value of @ when slipping

just begins. Since we obtain the values of 0; and @ as
part of the solution process, we calculated p/p,.

@n

Results and Discussion

The nondimensional slip extent o is plotted against
pfp; in Figure 4 for the case where an HE fiber is broken.
Note that p, is the remote (far from break) fiber load that
just initiates slipping, while p is the current load value
above p,. Curves are given for various values of the
hybrid parameter R for a value of n = (.8. When an 1E
fiber is broken, Figure 1 can still be used, but the shaded
(LE) and blank (HE) fibers are now interchanged, so that
the shaded (0, 0) LE fiber is broken. The relevant equi-
librivm equations for this case are developed accord-
ingly, using the equilibrium concepts discussed earlier in
the paper. The associated boundary value problem is
solved in the same manner as for a broken HE fiber. In
Figure 5, the slip extent « is plotied against p/p; when an
LE fiber is broken, for different R values and n = 0.8.
Note in Figure 4 that the slip extent increases as R takes
on values from 1 to ¥ when an HE fiber is broken, while
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FIGURE 4. Slip extent « versus p/p,; HE fiber is broken, n = 0.8.
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FIGURE 5. Slip extent « versus p/p,; LE fiber is broken, n = 0.8.

it decreases (Figure 5) as R takes on values from 1 to %%
when an LE fiber is broken. Recall that R = E*A/EA, so
that smaller values of R indicate greater differences in HE
and 1E fiber stiffness. If we regard slip as a dissipative
mechanism, and observe that there is less slip when an LE
fiber is broken (Figure 3), we should except a larger
stress concentration (SCF) near such a fiber break than for
the case when an HE fiber is broken (Figure 4). This is
borne out in Figure 6-8.

The stress concentration factor (SCF) is plotted against
p/p, in Figure 6 for the case when an LE fiber is broken
and for a friction index value n = 0.8 for various values
of R. It is clear that for a range of p/p; values, SCF
increases as R takes on values from I to ¥. For all values

1.55 . ; ‘ ; .
135 LE broken r=0.8
145}
1.41
1.35}

13

SCF

1251

115 2 215 3 35 4
pipl

FIGURE 6. Stress concentration factor (SCF} versus p/p;; LE fiber is
broken, # = 0.8.
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FGURE 7. Stress concentration factor (SCF) versus pfp,; HE fiber is
broken, r = 0.8.

of R, the scF decreases with p/p;. This is also expected,
since the slip extent increases for all values of R with
increasing p/p; (Figure 5). We have indicated an anal-
ogous observation in earlier work [14] on composite
sheets, where a matrix yield region in the composite
plays a role similar to the slip region in our case. In
Figure 7, the SCF is plotted against p/p, when an HE fiber
is broken. In this case, the SCF decreases as R goes from
1 to W%. Note that the slip extent increases in this range as
indicated in Figure 4.

In Figure 8, the scF is plotted against the hybrid
parameter R for various values of the friction index n.
The load level is selected as p/p; = 2, and the separate
cases of HE and IR broken fibers are both shown. The

1.4 T T r T v T T T
1350 E
p:'p,_=2
n=0.5
13F E
n=0.7
n=0.8
1.25E =09
5 12 LE broken
7
1.15
1.1
1.08F HE broken

0.1 0.2 03 0.4 05 R 0.6 07 0.8 0.9 1

FIGURE 8. scF versus R for various values of friction index n for the
separate cases of Hg and LE broken fibers. Load level, pip, = 2.
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sensitivity of SCF to R is clearly indicated, with a more
sharply increasing ScF for the case where an LE fiber is
broken, and a mildly decreasing SCF in the case where an
HE fiber is broken. As we see here, this trend is estab-
lished for a range of n values from 0.5 to 0.9, so that the
choice of n (for a given yarn) does not alter the fact that
a hybrid effect is possible, where the principal fibers are
LE fibers. Ultimately, differences in fiber strengths and
failure statistics would both contribute to the exact nature
of a given beneficial hybrid effect. Note also that for a
given p/p;, the SCF decreases as the friction index
increases. We can explain this by observing that for a
given axial strain €, the shear flow g, will increase with
n as shown in Figure 3. This implies that for a larger &,
a given slip region, with the larger shear (friction) forces
developed, will take on more of the load of the broken
fiber and hence lead to a smaller scr. We can also inferpret
this as more energy dissipating in the slip region.

Conclusions

We have used a micromechanical model to develop
the equations for deformation in a fiber array represent-
ing the microstructure of a blended (hybrid) yarn, con-
sisting of an equal number of low elongation (LE) and
high elongation (HE) fibers undergoing axial extension.
We show in what manner the stress concentration (SCF)
in the intact fiber next to a broken fiber depends on
whether the broken fiber is an LE or an HE fiber. The sSCF
also depends, in an important way, on the parameter R,
the ratio of HE to LE fiber stiffness. While SCF increases in
an intact HE fiber when an LE fiber is broken, as R takes
on values from 1 to ¥, it decreases for an intact LE fiber
for the same range of R when an HE fiber is broken. A
beneficial hybrid effect on yarn strength is therefore
possible if the principal fibers are chosen as appropriate
LE fibers. We also indicate how the slip region of a
broken {iber and an associated friction index n play a role
in this effect.
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