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Mesh Moving Techniques
for Fluid-Structure Interactions
With Large Displacements
In computation of fluid-structure interactions, we use mesh update methods consist
mesh-moving and remeshing-as-needed. When the geometries are complex and th
tural displacements are large, it becomes even more important that the mesh m
techniques are designed with the objective to reduce the frequency of remeshing. T
end, we present here mesh moving techniques where the motion of the nodes is go
by the equations of elasticity, with selective treatment of mesh deformation base
element sizes as well as deformation modes in terms of shape and volume chang
also present results from application of these techniques to a set of two-dimension
cases.@DOI: 10.1115/1.1530635#
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1 Introduction
Computation of flows with fluid-structure interactions was o

of the objectives in development of the Deforming-Spati
Domain/Stabilized Space-Time~DSD/SST! formulation, @1–3#,
for flows with moving boundaries and interfaces. This is
interface-tracking technique, and as such requires that the me
updated to track the moving interfaces as the spatial domain
cupied by the fluid is varying~i.e., deforming! with respect to
time. In computations with the arbitrary Lagrangian-Euleri
method, which is another interface-tracking method, one faces
same requirement. In general, mesh update consists of movin
mesh for as long as it is possible, and full or partial remesh
~i.e., generating a new set of elements, and sometimes also a
set of nodes! when the element distortion becomes too high.

As the mesh moves, the normal velocity of the mesh at
interface has to match the normal velocity of the fluid. With th
condition met, our main objective in designing a mesh upd
technique becomes reducing the remeshing frequency. This is
important in three-dimensional computations with complex geo
etries, because remeshing in such cases typically requires ca
an automatic mesh generator and projecting the solution from
old mesh to the new one. Both of these steps involve large c
putational costs.

In selecting a category of mesh moving techniques, geome
complexity is one of the major determining factors. Sometim
the overall problem geometry, including the interface geometry
simple enough so that the mesh can be generated by a sp
purpose mesh generation technique. In such cases, the mes
be updated by using a special-mesh moving technique, with
calling an automatic mesh generator and without solving any
ditional equations to determine the motion of the mesh. This
proach involves virtually no mesh update cost, and one of
earliest examples, two-dimensional computation of sloshing
laterally vibrating container, can be found in@1#.

In most practical problems, such as the parachute fluid-struc
interactions, the overall problem geometry would be too comp
to use a special-purpose mesh generation technique. The
produced with an automatic mesh generator would require an
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Fig. 1 Two-dimensional test mesh
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tomatic mesh moving technique. We use the technique introdu
in @4#, where the motion of the nodes is governed by the equat
of elasticity, and the mesh deformation is dealt with selectiv
based on the sizes of the elements and also the deformation m
in terms of shape and volume changes. The motion of the inte
nodes is determined by solving these additional equations.
boundary condition, the motion of the nodes at the interface
specified to match the normal velocity of the fluid at the interfa
Mesh moving techniques with comparable features were in
duced in@5#.

In the technique introduced in@4#, selective treatment of the
mesh deformation based on shape and volume changes is im
mented by adjusting the relative values of the Lame´ constants of
the elasticity equations. The objective would be to stiffen
mesh against shape changes more than we stiffen it against
ume changes. Selective treatment based on element sizes, o
other hand, is implemented by simply altering the way we acco
for the Jacobian of the transformation from the element domai
the physical domain. In this case, we would like the smaller e
ments to be stiffened more than the larger ones.

In this paper, we augment the method described in@4# to a more
extensive kind, where we introduce a stiffening power that de
mines the degree by which the smaller elements are rend
stiffer than the larger ones. When the stiffening power is se
zero, the method reduces back to an elasticity model with
Jacobian-based stiffening. When it is set to one, the metho
identical to the one introduced in@4#. Our studies here include
seeking optimum values of this stiffening power with the obje
tive of reducing the deformation of the smaller elements, typica
placed near solid surfaces. In this context, by varying the stiff
ing power, we generate a family of mesh moving techniques,

Fig. 2 Translation tests. Deformed mesh for xÄ0.0,1.0,2.0.
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test these techniques on fluid meshes where the structure u
goes three different types of prescribed motion or deformation

2 Mesh Moving Model

2.1 Equations of Linear Elasticity. Let V,Rnsd be the
spatial domain bounded byG, wherensd is the number of space
dimensions. Corresponding to the Dirichlet and Neumann-t
boundary conditions, the boundaryG is composed ofGg andGh .
The equations governing the displacement of the internal no
can then be written as

“"s1f50 on V, (1)

wheres is the Cauchy stress tensor andf is the external force. For
linear elasticity,s is defined as

s5ltr~«~y!!I12m«~y!, (2)

wherey is the displacement, tr~ ! is the trace operator,l andm are
the Laméconstants,I is the identity tensor, and«~y! is the strain
tensor:

«~y!5
1

2
~“y1~“y!T!. (3)

Fig. 3 Translation tests. Mesh quality as function of stiffening
power.
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The Dirichlet and Neumann-type boundary conditions are rep
sented as

y5g on Gg ,

n"s5h on Gh . (4)

2.2 Finite Element Formulation. In writing the finite ele-
ment formulation for Eq.~1!, we first define the finite element tria
and test function spacesS h andV h:

S h5$yhuyhP@H1h~V!#nsd,yh8gh on Gg%, (5)

V h5$whuwhP@H1h~V!#nsd,wh80 on Gg%. (6)

Here, H1h(V) is the finite-dimensional function space overV.
The finite element formulation for Eq.~1! is then written as fol-
lows: find yhPS h such that;whPV h

E
V

«~wh!:s~yh!dV2E
V

wh"fdV5E
Gh

wh"hdG. (7)

By assigning appropriate values to the ratiol/m, we can pro-
duce to a certain extent the desired effect in terms of volume
shape changes for the elements during the mesh motion.
approach becomes more clear if we rewrite the term that gene
the stiffness matrix as

«~wh!:s~yh!

5S l1
2

nsd
m D tr~«~wh!!tr~«~yh!!12m«8~wh!:«8~yh!, (8)

where

Fig. 4 Rotation tests. Deformed mesh for xÄ0.0,1.0,2.0.
60 Õ Vol. 70, JANUARY 2003
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«8~yh!5«~yh!2
1

nsd
tr~«~yh!!I . (9)

The two terms on the right-hand side of Eq.~8! can be recognized
as those corresponding, respectively, to the volume and sh
change components of the stiffness matrix. In this context,
relative values of (l1 2/nsdm) and 2m can be adjusted to pro
duce to a certain extent the desired effect in terms of stiffening
mesh against volume or shape changes.

Although a selective treatment of the mesh deformation can
incorporated also into the force vectorf by providing an appropri-
ate definition for the forcing function, in our case we set it equ
to zero.

2.3 Jacobian Options. A selective treatment of the mes
deformation based on the element sizes can be implemente
simply altering the way we account for the Jacobian of the tra
formation from the element domain to the physical domain. T
method was first introduced in@4#, where the Jacobian is droppe
from the finite element formulation, resulting in the smaller e
ments being stiffened more than the larger ones. Here we augm

Fig. 5 Rotation tests. Mesh quality as function of stiffening
power.
Transactions of the ASME
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that method to a more extensive kind. To describe this appro
we first write the global integrals generated by the terms in Eq.~8!
as

E
V

@ . . . #dV5(
e
E

J
@ . . . #eJedJ, (10)

where@ . . . # symbolically represents what is being integrated,J
is the finite element~parent! domain, and the Jacobian for eleme
e is defined as

Je5detS ]x

]jD
e

. (11)

Here x represents the physical coordinates, andj represents the
element~local! coordinates.

We alter the way we account for the Jacobian as follows:

E
J

@ . . . #eJedJ °E
J

@ . . . #eJe S J0

JeD x

dJ, (12)

wherex, a non-negative number, is the stiffening power, andJ0,
an arbitrary scaling parameter, is inserted into the formulation
make the alteration dimensionally consistent. Withx50.0, the
method reduces back to an elasticity model with no Jacob
based stiffening. Withx51.0, the method is identical to the on
first introduced in@4#. In the general case ofxÞ1.0, the method
stiffens each element by a factor of (Je)2x, andx determines the
degree by which the smaller elements are rendered stiffer than
larger ones.

Fig. 6 Bending tests. Deformed mesh for xÄ0.0,1.0,2.0.
Journal of Applied Mechanics
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3 Test Cases
The test cases are all based on a two-dimensional unstruct

mesh consisting of triangular elements and an embedded stru
with zero thickness. The mesh spans a region ofuxu<1.0 and
uyu<1.0. The structure spansy50.0 anduxu<0.5. A thin layer of
elements~with ,y50.01) are placed along both sides of the stru
ture, with 50 element edges along the structure~i.e., ,x50.02).
Figure 1 shows the mesh and its close up view near the struc

The test cases involve three different types of prescribed mo
or deformation for the structure: rigid-body translation in t
y-direction, rigid-body rotation about the origin, and prescrib
bending. In the case of prescribed bending, the structure defo
from a line to a circular arc, with no stretch in the structure and
net vertical or horizontal displacement. The tests are carried
with the Jacobian-based stiffening technique defined by Eq.~12!,
wherex ranges from 0.0~no stiffening! to 2.0.

3.1 General Test Conditions and Mesh Quality Measures
In all test cases the maximum displacement or deformation
reached over 50 increments. The mesh over which the elast
equations are solved is updated at each increment. This upda
based on the displacements calculated over the current mesh

Fig. 7 Bending tests. Mesh quality as function of stiffening
power.
JANUARY 2003, Vol. 70 Õ 61
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has been selectively stiffened. That way, the element Jacob
used in stiffening are updated every time the mesh deforms. A
result, the most current size of an element is used in determi
how much it is stiffened. Also as a result, as an element
proaches a tangled state, its Jacobian approaches zero, a
stiffening becomes very large.

To evaluate the effectiveness of different mesh moving te
niques, two measures of mesh quality are defined based on t
used in@6#. They areelement area change( f A

e) andelement shape
change( f AR

e ):

f A
e5U logS Ae

Ao
eD / log~2.0!U, (13)

f AR
e 5U logS ARe

eD / log~2.0!U. (14)

ARo
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Here subscript ‘‘o’’ refers to the undeformed mesh~i.e., the mesh
obtained after the last remesh! and ARe is the element aspec
ratio, defined as

ARe5
~ l e

max!
2

Ae , (15)

where l e
max is the maximum edge length for elemente. For a

given mesh, global area and shape changes (f A and f AR) are de-
fined to be the maximum values of the element area and sh
changes, respectively.

3.2 Test Results. In the translation tests, the prescribe
translation is in they-direction, with the displacement magnitude
ranging fromDy50.05 to 0.5. Figure 2 shows the deformed me
for the maximum translation ofDy50.5. It is evident that the
small elements near the structure respond poorly forx50.0, re-
Transactions of the ASME
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sulting in severe stretching of the row of elements adjacent to
structure, and tangling of elements near the structure tips. Fx
51.0 andx52.0, the small elements near the structure exp
ence no tangling and significantly less deformation. Forx52.0,
the small elements near the structure undergo almost rigid-b
motion. However, the behavior of the larger elements deterior
as the smaller elements are stiffened. This is most apparen
x52.0 where the larger element tangle near the upper boun
of the mesh. Figure 3 shows the values off A and f AR as functions
of x and for different magnitudes of translation. The bold cur
crossing the contours denotes the value ofx that results in mini-
mum global mesh deformation. For example, for a displacem
of 0.05 the optimal value off A is obtained whenx is approxi-
mately 0.5. For larger displacements, the optimal value ofx is
slightly greater. The optimal value off AR is obtained atx'0.8 for
a displacement of 0.05 and atx'0.7 for a displacement of 0.5.

In the rotation tests, the rotation magnitudes range fromDu
50.025p to 0.25p. For x50.0 the mesh experiences significa
stretching and tangling near the structure tips. No tangling is s
for the cases with element stiffening, but forx52.0 the large
elements near the outer boundaries experience significant di
tion. Figure 4 shows the deformed mesh for the maximum rota
of p/4. Figure 5 shows the values off A and f AR as functions ofx
and for different magnitudes of rotation. The minimum deform
tion of the mesh is seen for values ofx around 0.8. The mesh
quality deteriorates more rapidly asx decreases from 1.0 tha
whenx increases from 1.0.

In the bending tests, the bending magnitudes range fromu
50.1p to p, whereu denotes the arc length~in radians! for the
deformed structure. Figure 6 shows the deformed mesh when
structure bends to a half-circle~i.e., u5p). For x50.0, we see
tangling near the structure tips. As the element stiffening
creases, tangling at the tips disappears, but severe element d
tion arises in the interiors. Figure 7 shows the values off A and
f AR as functions ofx and for different magnitudes of prescribe
bending. The minimum deformation of the mesh is seen for val
of x around 1.1.

Figure 8 shows, for different deformation modes, the conto
of f A

e for stiffening power ofx50.0, 1.0, and 2.0. The contour
corresponding tof A

e50.5, 1.0, and 2.0 are denoted with dotte
dashed, and bold lines, respectively.

4 Concluding Remarks
We have presented automatic mesh moving techniques

fluid-structure interactions with large displacements. In these te
Journal of Applied Mechanics
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niques, the motion of the nodes is governed by the equation
elasticity, and deformation of the elements are treated selecti
based on element sizes as well as deformation modes in term
shape and volume changes. Smaller elements, typically pla
near solid surfaces, are stiffened more than the larger ones. Th
implemented by altering the way we account for the Jacobian
the transformation from the element domain to the physical
main. The degree by which the smaller elements are stiffe
more than the larger ones is determined by a stiffening po
introduced into the formulation. When the stiffening power is s
to zero, the method reduces back to a model with no Jacob
based stiffening. The two-dimensional test cases we prese
here for three different structural deformation modes show that
stiffening power approach substantially improves the deform
mesh quality near the solid surfaces, even when the displacem
are large. The test cases also show that the optimal stiffen
power is somewhat problem-dependent. It is higher for the be
ing tests (x'1.1) than it is for the rotation (x'0.8) and transla-
tion (x'0.7) tests.
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