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Mesh Moving Techniques
for Fluid-Structure Interactions
With Large Displacements

In computation of fluid-structure interactions, we use mesh update methods consisting of
mesh-moving and remeshing-as-needed. When the geometries are complex and the struc-
tural displacements are large, it becomes even more important that the mesh moving
techniques are designed with the objective to reduce the frequency of remeshing. To that
end, we present here mesh moving techniques where the motion of the nodes is governed
by the equations of elasticity, with selective treatment of mesh deformation based on
element sizes as well as deformation modes in terms of shape and volume changes. We
also present results from application of these techniques to a set of two-dimensional test

cases.[DOI: 10.1115/1.1530635

1 Introduction

Computation of flows with fluid-structure interactions was one
of the objectives in development of the Deforming-Spatial-
Domain/Stabilized Space-TiméOSD/SST formulation, [1-3],
for flows with moving boundaries and interfaces. This is an
interface-tracking technique, and as such requires that the mesh be
updated to track the moving interfaces as the spatial domain oc-
cupied by the fluid is varyindi.e., deforming with respect to
time. In computations with the arbitrary Lagrangian-Eulerian
method, which is another interface-tracking method, one faces the
same requirement. In general, mesh update consists of moving the
mesh for as long as it is possible, and full or partial remeshing
(i.e., generating a new set of elements, and sometimes also a new
set of nodeswhen the element distortion becomes too high.

As the mesh moves, the normal velocity of the mesh at the
interface has to match the normal velocity of the fluid. With this
condition met, our main objective in designing a mesh update
technique becomes reducing the remeshing frequency. This is very
important in three-dimensional computations with complex geom-
etries, because remeshing in such cases typically requires calling
an automatic mesh generator and projecting the solution from the
old mesh to the new one. Both of these steps involve large com-
putational costs.

In selecting a category of mesh moving techniques, geometric
complexity is one of the major determining factors. Sometimes
the overall problem geometry, including the interface geometry, is
simple enough so that the mesh can be generated by a special-
purpose mesh generation technique. In such cases, the mesh car
be updated by using a special-mesh moving technique, without
calling an automatic mesh generator and without solving any ad-
ditional equations to determine the motion of the mesh. This ap-
proach involves virtually no mesh update cost, and one of its
earliest examples, two-dimensional computation of sloshing in a
laterally vibrating container, can be found |if].

In most practical problems, such as the parachute fluid-structure
interactions, the overall problem geometry would be too complex
to use a special-purpose mesh generation technique. The mesh
produced with an automatic mesh generator would require an au-
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Fig. 1 Two-dimensional test mesh
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Fig. 2 Translation tests. Deformed mesh for ~ x=0.0,1.0,2.0.
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tomatic mesh moving technique. We use the technique introduce X
in [4], where the motion of the nodes is governed by the equation

of elasticity, and the mesh deformation is dealt with selectively
based on the sizes of the elements and also the deformation mod..
in terms of shape and volume changes. The motion of the internal ) ) i L
nodes is determined by solving these additional equations. Kg- 3 Translation tests. Mesh quality as function of stiffening
boundary condition, the motion of the nodes at the interfaces 18 Ve"

specified to match the normal velocity of the fluid at the interface.

Mesh moving techniques with comparable features were intro- . .
duced in[5]. test these techniques on fluid meshes where the structure under-

In the technique introduced if4], selective treatment of the 99€S three different types of prescribed motion or deformation.

mesh deformation based on shape and volume changes is im%Ie- .
mented by adjusting the relative values of the Larnastants of Mesh Moving Model

the elasticity equations. The objective would be to stiffen the 21 Equations of Linear Elasticity. Let QCR™¢ be the

mesh against shape changes more than we stiffen it against Vscﬁ?éial domain bounded b, wheren,, is the number of space

ume changes. Selective treatment based on element sizes, on ltmensions Corresponding to the Dirichlet and Neumann-type
other hand, is implemented by simply altering the way we accou undary conditions, the boundaFyis composed of'y andT, .

for the Jacobian of the transformation from the element domain : - ; )

the physical domain. In this case, we would like the smaller ele- e equations governing the displacement of the internal nodes

ments to be stiffened more than the larger ones. can then be written as
In this paper, we augment the method describdd jro a more V-o+f=0 on Q, (1)

extensive kind, where we introduce a stiffening power that deter- . .
gp rgaerea is the Cauchy stress tensor dnd the external force. For

Shape Change

mines the degree by which the smaller elements are rendet lastici i defined
stiffer than the larger ones. When the stiffening power is set t§€ar elasticity,o is defined as
zero, the method reduces back to an elasticity model with no o=\tr(e(y) +2us(y), 2)

Jacobian-based stiffening. When it is set to one, the method is ) . )
identical to the one introduced i#]. Our studies here include Wherey is the displacement, t is the trace operatoX, andu are

seeking optimum values of this stiffening power with the objedhe Lameconstants| is the identity tensor, anely) is the strain
tive of reducing the deformation of the smaller elements, typicallNSOr: 1

placed near solid surfaces. In this context, by varying the stiffen- _- + T

ing power, we generate a family of mesh moving techniques, and &(y) 2(Vy (VY. @)
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Fig. 4 Rotation tests. Deformed mesh for ~ x=0.0,1.0,2.0. 05F y
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The Dirichlet and Neumann-type boundary conditions are repre
sented as
y=g on Iy, Shape Change
n-o=h on I'y. (4) Fig. 5 Rotation tests. Mesh quality as function of stiffening
power.
2.2 Finite Element Formulation. In writing the finite ele-
ment formulation for Eq(1), we first define the finite element trial
and test function space®” and V"
Sh={y"y"e[H™"(Q)]"sey"=g" on Iy}, 5 , 1
{y |y [ ( )] y g g} ( ) £ (yh):b‘(yh)* n—tr(E(yh))l (9)
V= twhwh e [HI(Q)]"sow"'=0 on Ty} (6) sd

Here, H'"(Q) is the finite-dimensional function space oM@  The two terms on the right-hand side of E8) can be recognized
The finite element formulation for Ed1) is then written as fol- as those corresponding, respectively, to the volume and shape
lows: findy"e 8" such thatvw"e V" change components of the stiffness matrix. In this context, the
relative values of X + 2/ngqu) and 2« can be adjusted to pro-
j e(W"):a(y")dQ — J whfdQ = f whehdr. (7) duce to a certain extent the desired effect in terms of stiffening the
Q Q T, mesh against volume or shape changes.
By assigning appropriate values to the rati, we can pro- Although a selective treatment of the mesh deformation can be
y gning approp ’ P incorporated also into the force vectoby providing an appropri-

duce to a certain extent the desired effect in terms of VOll.Jme abfh definition for the forcing function, in our case we set it equal
shape changes for the elements during the mesh motion. THIS

. - Zero.
approach becomes more clear if we rewrite the term that generates
the stiffness matrix as 2.3 Jacobian Options. A selective treatment of the mesh

deformation based on the element sizes can be implemented by
simply altering the way we account for the Jacobian of the trans-
2 formation from the element domain to the physical domain. This
= ( N+ n—,u)tr( e(WM)tr(e(y")+2ue’ (W"):e'(y"), (8) method was first introduced {], where the Jacobian is dropped
sd from the finite element formulation, resulting in the smaller ele-
where ments being stiffened more than the larger ones. Here we augment

e(w"):a(y")

60 / Vol. 70, JANUARY 2003 Transactions of the ASME



5 T T T T T T T T
asf 6=01n-10n E
4+ 4
35 i
ak ]
L5 4
H3 J
15F E
1+ 4
05
00 012 0.‘4 OTB 08 1 1.2 1.4 186 18 2
x
Area Change
5 T T T T T T T T
asf 8=01n-10mn g
ar .
as E
K 3 4
o -
~_<2.5
2| o
15F
W+
Fig. 6 Bending tests. Deformed mesh for  x=0.0,1.0,2.0. 05 J
o0 072 0:4 0?6 0?8 |‘ 1 f2 1 74 186 18 2

that method to a more extensive kind. To describe this approact
we first write the global integrals generated by the terms in(&q.
as

Shape Change

—_ Fig. 7 Bending tests. Mesh quality as function of stiffening
fﬂ[ - 1do=2) L[ . J°3dE, (10)  power.

where[ . . .] symbolically represents what is being integrat&d,
is the finite elementparenj domain, and the Jacobian for elemenB8 Test Cases

e is defined as The test cases are all based on a two-dimensional unstructured

. ax\ e mesh consisting of triangular elements and an embedded structure
Jo=det =] . (11)  with zero thickness. The mesh spans a regionxp&1.0 and

JO
2¢

9 |y|=<1.0. The structure sparys=0.0 and|x|<0.5. A thin layer of
Here x represents the physical coordinates, @nbpresents the €lementswith £,=0.01) are placed along both sides of the struc-
element(local) coordinates. ture, with 50 element edges along the structlire., £,=0.02).
We alter the way we account for the Jacobian as follows: ~ Figure 1 shows the mesh and its close up view near the structure.
The test cases involve three different types of prescribed motion
X or deformation for the structure: rigid-body translation in the
f [...]80%E »—>J’ [...]80¢ d=, (12) y-direction, rigid-body rotation about the origin, and prescribed
E = bending. In the case of prescribed bending, the structure deforms
) ) o from a line to a circular arc, with no stretch in the structure and no
wherey, a non-negative number, is the stiffening power, aAd net vertical or horizontal displacement. The tests are carried out
an arbitrary scaling parameter, is inserted into the formulation {gith the Jacobian-based stiffening technique defined by(E),
make the alteration dlmenS|onaIIy. consistent. \/Wh 0.0, the ~where y ranges from 0.@no stiffening to 2.0.
method reduces back to an elasticity model with no Jacobian-
based stiffening. Withy=1.0, the method is identical to the one 3.1 General Test Conditions and Mesh Quality Measures
first introduced in4]. In the general case of# 1.0, the method In all test cases the maximum displacement or deformation is
stiffens each element by a factor afff ~X, and y determines the reached over 50 increments. The mesh over which the elasticity
degree by which the smaller elements are rendered stiffer than #rpiations are solved is updated at each increment. This update is
larger ones. based on the displacements calculated over the current mesh that
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has been selectively stiffened. That way, the element Jacobidiere subscript 6” refers to the undeformed meshe., the mesh

used in stiffening are updated every time the mesh deforms. Aslatained after the last remeshnd AR® is the element aspect

result, the most current size of an element is used in determinirgio, defined as

how much it is stiffened. Also as a result, as an element ap-

proaches a tangled state, its Jacobian approaches zero, and its (180

stiffening becomes very large. AR=—"%—, (15)
To evaluate the effectiveness of different mesh moving tech-

niques, two measures of mesh quality are defined based on thgfre (e is the maximum edge length for elemeat For a

used in[6]. They areelement area changg ) andelement shape given mesh, global area and shape chandgsafid f,g) are de-

change(f&g): fined to be the maximum values of the element area and shape

changes, respectively.

[ e
fe—|log A—e)llog(Z.O) 7 (13) 3.2 Test _Results._ In _the tr_anslatio_n tests, the prespribed
A, translation is in theg/-direction, with the displacement magnitudes
ranging fromAy=0.05 to 0.5. Figure 2 shows the deformed mesh
AR® for the maximum translation oAy=0.5. It is evident that the
far= lOg(ARS)”oQ(Z'O) . (14) small elements near the structure respond poorlyyfet0.0, re-
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sulting in severe stretching of the row of elements adjacent to th&ues, the motion of the nodes is governed by the equations of
structure, and tangling of elements near the structure tipsyForelasticity, and deformation of the elements are treated selectively
=1.0 andy=2.0, the small elements near the structure expeitased on element sizes as well as deformation modes in terms of
ence no tangling and significantly less deformation. fer2.0, shape and volume changes. Smaller elements, typically placed
the small elements near the structure undergo almost rigid-bodlyar solid surfaces, are stiffened more than the larger ones. This is
motion. However, the behavior of the larger elements deterioratiesplemented by altering the way we account for the Jacobian of
as the smaller elements are stiffened. This is most apparent floe transformation from the element domain to the physical do-
x=2.0 where the larger element tangle near the upper boundangin. The degree by which the smaller elements are stiffened
of the mesh. Figure 3 shows the valued gfandf 5 as functions more than the larger ones is determined by a stiffening power
of x and for different magnitudes of translation. The bold curvatroduced into the formulation. When the stiffening power is set
crossing the contours denotes the valueedhat results in mini- to zero, the method reduces back to a model with no Jacobian-
mum global mesh deformation. For example, for a displacemdraised stiffening. The two-dimensional test cases we presented
of 0.05 the optimal value of , is obtained wheny is approxi- here for three different structural deformation modes show that the
mately 0.5. For larger displacements, the optimal valuge@$ stiffening power approach substantially improves the deformed
slightly greater. The optimal value 6f is obtained ajy~0.8 for mesh quality near the solid surfaces, even when the displacements
a displacement of 0.05 and gt=0.7 for a displacement of 0.5. are large. The test cases also show that the optimal stiffening
In the rotation tests, the rotation magnitudes range ftbéh power is somewhat problem-dependent. It is higher for the bend-
=0.0257 to 0.257. For y=0.0 the mesh experiences significaning tests f~1.1) than it is for the rotation)~0.8) and transla-
stretching and tangling near the structure tips. No tangling is seon (y~0.7) tests.
for the cases with element stiffening, but fge=2.0 the large
elements near the outer boundaries experience significant distor-
tion. Figure 4 shows the deformed mesh for the maximum rotatiaxcknomedgment
of 7/4. Figure 5 shows the values bf andf g as functions ofy
and for different magnitudes of rotation. The minimum deformeN
tion of the mesh is seen for values gfaround 0.8. The mesh
quality deteriorates more rapidly ag decreases from 1.0 than
when y increases from 1.0. Ref 1992
In the bending tests, the bending magnitudes range féom eterences e
=0.17 to m, where # denotes the arc Iengtﬂin radiang for the [1] Tequyar, T. E., 1991, “_Stabi’I’ized Finite Element Formulations for Incom-
deformed structure. Figure 6 shows the deformed mesh when the, .‘Fg%ﬂgﬁio"‘écggﬁftﬁonjn dASi‘(’)' prf!' %2‘;?%”&3;;‘:& eqy for Finite
structure bends to a half-circlée., 6= ). For x=0.0, we see Element Computations Involving Moving Boundaries and Interfaces—The
tangling near the structure tips. As the element stiffening in-  Deforming-Spatial-Domain/Space-Time Procedure: I. The Concept and the
creases, tangling at the tips disappears, but severe element distor- Preliminary Tests,” Comput. Methods Appl. Mech. Eng4, pp. 339-351.
tion arses in the interiors. Figure 7 shows the values,ohnd (% Texeyer ©.C: So 1 b, = snd w0, 057, B e ey o
far as functions ofy and for different magnitudes of prescribed The Deforming-Spatial-Domain/Space-Time Procedure: 1. Computation of
bending. The minimum deformation of the mesh is seen for values Free-Surface Flows, Two-Liquid Flows, and Flows With Drifting Cylinders,”
of y around 1.1. Comput. Methods Appl. Mech. Eng4, pp. 353-371.

: : ; 4] Tezduyar, T. E., Behr, M., Mittal, S., and Johnson, A. A., 1992, “Computation
Flegure 8_ShOWS’ for different deformation modes, the contours[ of Unsteady Incompressible Flows With the Finite Element Methods—Space-
of f, for stiffening power ofy=0.0, 1.0, and 2.0. The contours Time Formulations, lterative Strategies and Massively Parallel Implementa-
Corresponding tdi=0.5, 1.0, and 2.0 are denoted with dotted, tions,” New Methods in Transient Analysi. Smolinski, W. K. Liu, G. Hul-
dashed d bold li tivel bert, and K. Tamma, eds., ASME, New York, AMD-Vol. 143, pp. 7-24.

ashed, an 0 Ines, respectvely. [5] Masud, A., and Hughes, T. J. R., 1997, “A Space-Time Galerkin/Least-Squares
i Finite Element Formulation of the Navier-Stokes Equations for Moving Do-
4 Concludmg Remarks main Problems,” Comput. Methods Appl. Mech. Eng46, pp. 91-126.
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fluid-structure interactions with large displacements. In these tech- 351-373.
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