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ABSTRACT

We demonstrate here that large area periodic arrays of well-aligned carbon nanotubes can be fabricated inexpensively on Ni dots made by the
process of self-assembly nanosphere lithography. These periodic arrays appear colorful due to their efficient reflection and diffraction of
visible light. In addition, due to their honeycomb lattice structure, these arrays can act as photonic band gap crystals in the visible frequency
range. In this report, we present the initial exploration of the optical properties of such arrays. Here we show that these potential 2D photonic
band gap crystal arrays might find very important applications in optoelectronics.

Ever since the first successful synthesis of well-aligned
carbon nanotubes (CNTs) on substrates by plasma-enhanced
chemical vapor deposition (PECVD),! numerous attempts
have been reported on growth, characterization, and proper-
ties of aligned carbon nanotubes made by the same technique
or its slight modification.>™'¢ The catalyst used was either a
thin film of Ni/Fe/Co made by magnetron sputtering! ~!* or
dots made by electron beam (e-beam) lithography!!™!5 or
electrochemical deposition.'® The arrays grown from either
the thin film or from the dots by electrochemical deposition
are inexpensive and can be of large area, but are nonperiodic.
The arrays grown from dots made by e-beam lithography
are periodic, but are limited to a very small area and are
very expensive. It is clear that a self-assembly technique is
needed to overcome these problems.

Here we report the development of such a self-assembly
nanosphere lithography.'” This technique utilizes the com-
mercially available (Microparticles, GmbH) monodisperse
suspensions of polystyrene nanospheres. We investigated
nanospheres with diameters of 1, 0.5, 0.25, and 0.125 um.
First, a small amount of the suspension (4—6 uL) was applied
onto the surface of a clean, large silicon wafer. Subsequently,
the silicon wafer was immersed into the deionized water,
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and a highly ordered, large area monolayer of nanospheres
formed on the water surface after proper modification of the
surface tension with dodecylsodiumsulfate solution.'® By
draining the water, this defectless monolayer can be deposited
on the surface of any sufficiently flat substrate. Figure la
shows a monolayer of polystyrene spheres deposited on a
10 mm x 10 mm Si substrate. The uniform diffraction color
in Figure 1b shows that this indeed is a highly ordered,
essentially defectless monolayer. This is further confirmed
by the fast Fourier transform (FFT) analysis (shown in Figure
le).

The nanosphere arrays are subsequently used as a mask
for deposition of the catalyst (Fe, Co, or Ni). Electron beam
evaporation of Ni has been employed. After the deposition
of Ni, the polysterene particles are chemically removed in
toluene. Figure 2a shows the AFM image of the honeycomb
pattern of Ni dots (of quasi triangular shape) after removal
of the polystyrene spheres. These dots can be used directly,
or after annealing (in a vacuum at 900 °C for | h to form
arrays shown in Figures 2b and 2¢) to grow aligned carbon
nanotube arrays.!’

Hot filament PECVD' was used to grow the aligned carbon
naotube arrays. The details of the growth technique have
been extensively reported.!»!'1216 Briefly, the substrates with
the Ni dot arrays were first loaded into the bell jar chamber,
then the chamber was pumped down to 1075 Torr before
the growth gases were introduced. Acetylene gas (C.Ha) was
used as the carbon source, whereas ammonia gas (NH;) was



Figure 1. Highly ordered monolayer of polystyrene nanospheres
(diameter 0.5 um) on Si substrate made by the self-assembly
nanosphere lithography. (a) AFM image of the closely packed
hexagonal nanospheres, (b) single blue color of the area 10 x 10
mm?, (¢) FFT showing the high quality of the array.

used as the plasma enhancer and growth promoter. After the
chamber pressure reached about 5—20 Torr, a hot filament
was powered up to provide heat to the substrate and to help
in plasma generation. The plasma was maintained at about
600—800 V and 0.2—0.3 A. Growth takes usually 5—10 min
depending on the carbon nanotube length requirement.
Figures 3a and 3b show SEM images of the typical array at
low and medium magnification, respectively. It is worth
noting that the straightness of these nanotubes is not as good
as that reported before,"'""'2 The reason might be related to
imperfections in the removal of polystyrene nanospheres
from the substrate after Ni deposition or to the growth
conditions themselves, but not to the catalyst patterning, since

1"

Figure 2. AFM and SEM images of the Ni dots made by
nanosphere lithography. (a) AFM image of the Ni dots made from
the nanospheres, low (b) and high (c) magnifications of the round
Ni dots after annealing at 900 °C in vacuum for 1 h.

very straight nanotubes have been grown on the electron-
beam patterned Ni dots before.''> We are confident that
the quality can and will be improved with better care of the
polystyrene nanosphere removal and better control of the
growth. The optical properties of these periodic arrays were
studied thoroughly, and results are presented in the following
sections.

After growth, the periodic arrays of aligned nanotubes
appear colorful (see Figure 3c¢). This strong diffraction of
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Figure 3. Low (a) and high (b) magnification SEM images of the
highly ordered honeycomb array of aligned carbon nanotubes grown
by PECVD, (c) bright diffraction colors of red, blue, and green.

visible light demonstrates the high metallicity of the nano-
tubes (low dielectric losses) and the high degree of ordering
in the arrays.

The general theory of light diffraction can be used to show
that such honeycomb arrays will lead to a triangular
diffraction pattern. The honeycomb lattice is a hexagonal
two-dimensional (2D) Bravais lattice with a basis (shown
in Figure 4a).'" The primitive translation vectors of the lattice
are a; = a(l, 0) and a, = a(—1/2, \@’2). The basis vectors
are ¢; = 0 and 2 = (a; + 2a)/3. The corresponding
reciprocal lattice in 2D is triangular (shown in Figure 4b)."
The corresponding primitive reciprocal lattice vectors are b;
= 5(+/3/2, 1/2) and by = s(0, 1), where s = 4/av/3. Also
shown is the first Brillouin zone. In 3D, the reciprocal lattice
is an array of parallel lines (G-lines), each perpendicular to
the 2D reciprocal lattice, and each going through a reciprocal
lattice point, given by the reciprocal lattice vector G = mb,
+ nby 2
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Figure 4. (a) The honeycomb lattice, (b) the 2D triangular
reciprocal lattice of the honeycomb lattice, and (c) the 3D reciprocal
lattice of the 2D honeycomb lattice.

The differential cross-section for light scattering (gq) is
given by’

&) = |U () I(q) (1)

where Uq(g) is the scatterer form factor, and ¢ = K" — K is
the in-plane momentum transferred to the lattice in the
scattering process. K(K') is the in-plane component of the
wave vector of the incident (scattered) wave. I(g) is the
structure factor given by

Kg) =Y, llng)* (g — G) + S(g) )
G

where S(g) is the Ursell function (a measure of the spatial
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Figure 5. Diffraction pattern of light at different frequencies by
the nanotube arrays shown in Figure 3 (inset: diffraction pattern
of red color).

correlations of the local density fluctuations) and (sg) is the
ensemble average of the Fourier component (at G) of the
charge density, which in the case of the honeycomb lattice
of point scatterers is given by

2 4
Kng) = 1Y, exp(—iGe)* = 2{1 + cos[: (}; + n)” 3)

For a defectless crystal, the Ursell function is zero and the
scattering is governed by the Bragg diffraction, i.e., {(q)
sharply peaked at ¢ = G.

A plane wave incident normal to the lattice has its wave
vector k&, which has no in-plane component, i.e., K = 0. The
probleni here is very similar to that of the low energy electron
diffraction (LEED).?® Figure 4c shows that the diffraction
pattern is just the projection of the reciprocal lattice onto a
spherical screen (with its center on the sample), and therefore
the diffraction pattern obtained from our honeycomb lattice
should be a triangular lattice. From Figure 4c it is also
obvious that only a limited number of diffraction spots (up
to a given order) will occur for a given radius of the Ewald
sphere and given parameters of the reciprocal lattice (only
those lattice points which are encircled by the circumference
of the Ewald sphere in Figure 4c project into the diffraction
spots).

Figure 5 shows a diffraction pattern obtained from a
nanotube array of Figure 3, with @ = | gm. The pattern was
obtained by shining green (560 nm) and blue (454 nm) laser
light perpendicular to the plane of the lattice. The projection
was made onto an almost flat screen, which allowed for an
observation of a large portion of the projected reciprocal
space but caused a distortion of the triangular symmetry of
the pattern. Apart from this, the pattern is highly rotationally
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symmetric (except for the third order blue diffraction spots),
showing that our scatterers (nanotubes) are circularly sym-
metric in the plane. Note that there is a rather small hexatic
distortion of the pattern, indicating presence of a possible
formation of misaligned crystalline macro regions. There is
also a small diffusive scattering (nonzero Ursell function)
resulting from the fact that the nanotubes are not perfectly
straight (see Figure 3). For perfectly straight nanotubes the
diffraction spots would be points, and the green background
around the central spot would disappear. The amount of the
spot broadening can be estimated using the Debye—Waller
factor and assuming that bent nanotubes can be viewed as
effectively displaced from the lattice sites. We estimate from
Figure 3 that the mean relative (to lattice constant) displace-
ment of nanotubes is about 10%, and thus expect a similar
degree of spot broadening relative to the spot distance, in
agreement with Figure 5.
For this lattice

2 2
3’% § (% - n) )

IGl=s
For the first, second, and third order (see Figure 4c), we
have |G| = G, = s = 7.25 um™", |G| = G, = sv/3 = 12.5
um™', |G| = Gy = 25 = 14.5 um™', respectively. The radius
of the Ewald sphere is |k| = 11.2 um™! for the green light
and 13.8 ym™! for the blue light. This immediately implies
that the green light should experience diffraction only of the
first order, since only G; < |k|. Figure 5 shows that this
indeed is the case. Since for the blue light G, < G, < |k,
only first- and second-order diffraction is expected for strictly
normal incidence. Figure 5 shows that in addition to highly
symmetric first- and second-order spots of the blue light,
there are visible four third-order spots, asymmetrically
distributed on the lower-right half of the diffractogram. These
peaks result from the fact that the incoming light was not
strictly normal to the plane, which shifts the Ewald sphere
(by K) away from a reciprocal lattice point. Thus, in our
case, a small in-plane component K, due to a slight tilt of
the incoming wave with respect to the lattice normal, enabled
the crossing of the Ewald sphere with the otherwise inac-
cessible G-line, and the third-order “forbidden™ spots ap-
peared. This way, by tilting the incoming beam, one can
“walk” across the projected reciprocal lattice. We have
confirmed that in this way the second-order “forbidden” spots
of the green light can be also recovered.

There is also a specific dependency of the intensity of the
spots on their order. If the scatterer lattice were without basis,
{ng) would be 1 and the structure factor /(g) would consist
of Bragg spots with equal intensity. The scattering cross-
section would then reflect the usual behavior of the scatterer
form factor and would consist of Bragg spots decaying
uniformly with the order. This indeed is the case for the
Fourier transform of the triangular lattice of PS spheres (see
Figure 1c). Since the honeycomb lattice is a triangular lattice
with a basis, |(ng) |* is given by eq 3 and is equal to 1 for
the first and third order, but 4 for the second order. Therefore,
even with the form factor decay, the second-order spots
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should be brighter than the first, and of course much brighter
than the third-order spots. This is again fully consistent with
Figure 5, which shows precisely this behavior for the blue
light diffraction. The inset in Figure 5 shows the diffraction
pattern for a red light (680 nm), obtained at incidence of
45°. Note that there is an asymmetry of the spot intensity
favoring the forward reflection. This reflects the fact that
with increasing angle of incidence, the diffraction pattern
must evolve into the in-plane scattering, which according to
the Laue construction should consist of only one diffraction
spot for a given incoming direction.

In addition to these straightforward diffraction effects, our
arrays of nanotubes can act also as 2D photonic band gap
crystals. It has been shown?! that periodic arrays of structures
having dielectric constants (e,) different from the environ-
ment (&) not only act on propagating photons by enforcing
the Bragg scattering as discussed above but also, in complete
analogy to the electron propagation in atomic crystals, lead
to the opening of energy (frequency) gaps at the Bragg
reflection points, i.e., at the Brillouin zone boundaries. If
such gaps occur at all propagation directions of the photon
(or electron), an absolute gap exists in the photonic spectrum,
which in the case of the photonic crystal leads to a total
reflection of light in this frequency band. It has been
shown?>?* that a honeycomb array of rods, with a large
dielectric constant, embedded in a material with a low
dielectric constant, produces a photonic band structure with
absolute gaps at low fillings. This was later confirmed by
an experiment in the microwave frequency range®* and very
recently in the infrared frequency range,” in perfect agree-
ment with the theory. It was also shown that a simple size
scaling (w ~ 1/a) holds for the gaps, and therefore one can
simply rescale the results of these papers to systems with
different sizes, such as honeycomb arrays of nanotubes.

Even though our nanotubes have a dielectric constant that
is different from that of the nanorods considered in refs 22—
24, we can still directly employ results of these references
to our arrays of nanotubes, after proper dielectric constant
scaling. First we note that in the theory of refs 22—23, all
the relative sizes of the gaps d; = |Aw/w,| are approximately
proportional to the Fourier components of the perturbation
(dielectric constant inhomogeneity), which in turn, for a
system with €, > &, are proportional to p = l/e, — l/e,.
Therefore, we find that 6; ~ p. Since this is the only
dependency on €, and €, in the gap equations, the results for
various gaps obtained in refs 22—23 can be simply scaled
(by using p) to obtain corresponding results for systems with
different dielectric constants. Using this, we immediately
show that the honeycomb array of our nanotubes obtained
by using nanospheres of diameter 0.5 um should act as a
2D photonic band gap crystal with the gap at the radiation
wavelength 4 & 0.5 gm. Since our metallic nanotubes have
€, < 0 in the visible frequency range (their plasma frequency
is at 6.5 eV); this yields p > 1, and therefore the gap size is
expected to be d; > 15%. Note that since the dielectric
constant of nanotubes has also an imaginary part (losses),
the gap does not imply a perfect reflection. The experimental
effort to demonstrate the photonic band gap in our nanotube
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arrays is in progress. In view of ref 25, we feel confident
that we can obtain photonic band gaps in the visible range.
This would be very difficult to achieve using the fabrication
method of ref 25. In addition, our method is very inexpensive
and scalable. The imperfections in the nanotube straightness
will tend to reduce the photonic band gap size, in full analogy
to the gap reduction in the electronic crystals. The size of
this reduction scales with the mean effective displacement
(due to bending) of nanotubes from the lattice sites and is
expected (as discussed above) to be about 10% for the array
shown in Figure 3.

We note that the nanotubes can be coated for better control
of the photonic crystal parameters. They can also be used
as structural templates, to obtain nonmetallic photonic arrays,
including nonmetallic 2D band gap crystals.

In conclusion, we report here a scalable inexpensive
technique to fabricate large periodic arrays of carbon
nanotubes. These arrays not only reflect and diffract light
but can also have a photonic band gap in, or around, the
visible frequency range. The precise frequency location and
size of this gap can be controlled by the structural and
material parameters of the arrays.
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