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A Micromechanical Model for Slit-damaged Braided Fabric Air-beams
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Boston, Massachusetts 02115-5096, USA

THOMAS A. GODFREY

Natick Soldier Center, US Army Soldier & Biological Chemical Command, Natick, Massachusetts 01760-5020, USA

ABSTRACT

A micromechanical model has been developed that will allow the study of a slit-
damaged braided fabric air-beam structure. As such, the relevant system of non-dimen-
sional ordinary differential equations is derived and solutions are given for the stress
concentration near the broken yarns. This knowledge will contribute to the prediction of
damage growth and the ability to compare different fabric materials for their damage
tolerance. A simplification of the analysis has been shown to be possible when a
parameter, e, the ratio of yarn tensions due to inflation to the yarn stiffness is small,
approaching zero. In such a case, the equations for the braided fabric can be reduced to
those of the plain weave fabric, so that the stress concentrations are the same as those for
woven fabrics. As it turns out, an important result of the present analysis is that the stress
concentration factor is, in fact, independent of the parameter, e, and the helix angle of the
braided fabrics. This means that much of what has been learned in the study of damage
in woven fabrics can be used for braided fabrics.

In addition to woven fabric air-beams currently in
development and production for large shelters and space
structures, a braided fabric air-beam technology has
emerged. Much work has already been done in studying
damage growth in woven fabrics [1–3, 5], in which the
yarns of the weave are oriented normal to one another.
Determination of the stress concentration at the end of a slit
in the yarns has been used to predict damage growth. In the
development of the non-dimensional equations, a parameter
has also been identified [2], which may be used to compare
different materials as to their damage tolerance.

It would be useful to develop similar technology for
braided construction in which the yarns are no longer
normal to each other, but are oriented at some angle.
Although the construction of curved braided air-beams
with some longitudinally stiffened regions is complex,
the essence of the beam is a braided tube with a nominal
helix angle such that the hoop and longitudinal stresses
in the beam are supported by the appropriate components
of the yarn tension.

The present paper derives equilibrium equations in
terms of appropriate yarn displacements where strains

and yarn rotations are assumed small so that terms in-
volving products of displacements are neglected. The
complement of the angle between yarns is denoted by,
�, so that when � � 0 the yarns are normal to each other
as in woven fabrics. Also by appropriate non-dimension-
alization, a parameter, e � T/EA, appears, where T is the
yarn tension and EA is a measure of yarn stiffness. Some
of the present fabrics yield values of e in the neighbor-
hood of 0.03. When e approaches zero there is a marked
decoupling of the governing simultaneous equations, for
any value of �. A dramatic simplification occurs for
which the structure of the equations is essentially that of
the previous woven fabric model, with the implication
that stress concentrations due to yarn breaks developed
by the braided fabric model are similar to those for
woven fabrics.

In the present work the full coupled equations are used
to find solutions for various values of e, ranging from 0.0
to 0.10, and values of � in the neighborhood of current
airbeam technology of 36° with 25% variations. The
results indicate that there is little or no change in stress
concentration for the chosen range of values for e and �.
This is a significant result since most of the information
that has been defined for woven fabric technology can be
used for braided fabrics. In the case in which there is a
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rubber coating on the air-beam, the increase in stiffness
appears in the non-dimensionalized quantities, as indi-
cated in [4]. The non-dimensional equations do not
change and the stress concentration is unaffected, so that
the conclusions in the present paper remain the same.

Analysis

The sketch in Figure 1, of an element of the beam
surface, illustrates the helix angle in relation to the hoop
and longitudinal directions. Our purpose is to develop a
micromechanical model to study a slit-damaged airbeam
structure. As indicated in Figure 2a, the slit consists of
aligned consecutive breaks of the I yarns, where the
nomenclature of I and II yarns is shown in Figure 2. The
II yarns are not interrupted by the slit. Both I and II yarns
carry remote tensions, T, due to the inflation-induced
hoop and longitudinal stresses in the air-beam.

We consider the i-, j-th yarn cross-over point and its
immediate neighbors in the braided fabric, as shown in
Figure 2b. Equilibrium equations for the cross-over point
i, j are easily derived using an approach similar to that
taken previously with plain woven fabrics [3]. We first
consider the case where no slip occurs at the cross-over
point and that rotations and strains in the yarns are small.
In contrast to the woven fabric case [3], we now have an
oblique angle between the I and II yarns. As a result, it
is necessary to consider the y-direction displacement of
the cross-over points. This will introduce nonlinear terms
in the force equilibrium equations. By assuming that
terms involving products of displacements are neglected
due to the small rotation and strain assumption, it is
possible to derive linearized equations.

Let ui,j and vi,j be yarn cross-over point displacements
in the x and y directions. The equilibrium equations,
where variations in the x (or j ) direction have been
averaged (smeared out) as in Reference [3], can be
derived in a straightforward manner.

They are:

d2ui

dx2 � k1 �ui�1 � 2ui � ui�1 �

� k2 �vi�1 � 2vi � vi�1 � � 0 (1)

d2vi

dx2 � k3 �vi�1 � 2vi � vi�1 �

� k4 �ui�1 � 2ui � ui�1 � � 0 (2)

where,

k1 �
s2 � ec2

L2 , k2 �
�1 � e�sc

L2 , k3

�
s2 � c2/e

L2 , k4 �
�1/e � 1�sc

L2 (3)

and s � sin �, c � cos �, e � T/EA

where T is the remote tension in the yarns and EA is a
measure of yarn stiffness. The nominal angle, �, and

FIGURE 1. An element of the beam surface.

FIGURE 2. (a) Aligned consecutive breaks in the I yarns. (b) The i ,
j th yarn cross-over point and its immediate neighbors in the braided
fabric.
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yarn spacing, L, are shown in Figure 2. If we define
dimensionless quantities �, Ui and Vi by

x � L�/�e, �ui ,vi� � L�e�Ui ,Vi� (4)

Equations (1) and (2) become,

U �i � b1�Ui�1 � 2Ui � Ui�1�

� b2�Vi�1 � 2Vi � Vi�1� � 0 (5)

V �i � b3�Vi�1 � 2Vi � Vi�1�

�
b2

e
�Ui�1 � 2Ui � Ui�1� � 0 (6)

where

� �� �
d� �

d�
, b1 �

s2 � ec2

e
�

k1L2

e
, b2

� �1

e
� 1�sc � k4L2, b3 �

es2 � c2

e2 (7)

Note that b2 is a coupling parameter. When � � 0 as
in woven fabrics, s � 0, b2 � 0, and the Ui and Vi

displacements are de-coupled from equations (5) and (6).
For arbitrary values of �, if the quantity e � T/EA is
very small, as is the case for materials currently used
such as Vectran and Kevlar, then the second and third
terms in equation (6) are large in comparison with the
first term, which can be dropped, so that we can write

Vi�1 � 2Vi � Vi�1 � �
s

c
�Ui�1 � 2Ui � Ui�1� (8)

Substituting equation (8) into equation (5) we can
eliminate the Vi displacements to get

U �i � Ui�1 � 2Ui � Ui�1 � 0 (9)

Equation (9), which is in fact the equation that results
when modeling plain weave fabrics [3], implies that, for
the case considered, where no slip occurs at the cross-
over points, the braided fabric should develop stress
concentrations similar to woven fabrics due to yarn
breaks. This conclusion, as just indicated, was subject to
the restriction that yarn tensions due to inflation are small
compared to the yarn stiffness, so that the parameter e is
small. In what is to follow, it will be shown that the
calculation of the stress concentration for braided fabrics
gives the same result as that for woven fabrics for general
values of e.

BRAIDED FABRIC MODEL WITHOUT A SLIP REGION

A broken yarn configuration will be studied where
the full equations (5) and (6) are to be considered.

Solutions will be sought for different values of the
parameter e � T/EA to determine its influence on the
stress concentration, and compare the results with
those predicted when using equation (9) (i.e., e � 0, �
� 0). In this section we do not consider a region
where the broken yarns lead to slipping between the I
and II yarns. This is treated in another section to
ascertain the effect of slipping on the stress concen-
tration factor.

In addition to equations (5) and (6) boundary condi-
tions need to be considered at x � 0 , where the breaks
occur. Suppose the I yarns are numbered as in Figure 2a,
so that i � 0 is the center yarn where y � 0. The n-th
yarn is given by i � n in the positive y direction and
i � –n in the negative y direction. Then for all broken
yarns at x � 0, we require that the total load in the yarn
at the break is zero, which translates to dui(0)/dx �
�T/EA � �e. This result is obtained by noting that the
total load in the yarn is EA dui/dx � T, where T is the
initial load and EA dui/dx is the additional load due to the
disturbance (i.e., a break), and this total load must vanish
at a break. Using equation (4), this condition can be
written in non-dimensional form as dUi(0)/d� � �1.
Because of zero shear at the broken end, we also have
dVi(0)/d� � 0.

For all intact yarns, we note that the anti-symmetry
which exists along � � 0, requires that U�n(0�)
� �Un(0�) and V�n(0�) � �Vn(0�) where, for exam-
ple in Figure 2a, n is greater than or equal to 2. Also,
since all intact yarns are in tension at � � 0, we also have
U��n(0�) � U�n(0�).

As an example, consider the case of three yarn breaks
with two intact yarns on either side as shown in Figure 3,
where we assume U3 � U�3 � 0, V3 � V�3 � 0 so that
the active yarns are n � 0, 	1, 	2. The differential
equations are given by equations (5) and (6) (where i
� 0, 	 1, 	 2), and represent a system of ten second-
order differential equations for the unknown displace-
ments Ui, Vi, (i � 0, 	 1, 	 2).

FIGURE 3. Breaks in the I yarns at � � 0 for yarns n � 0, �1, �1.
The intact yarns are n � �2, �2.
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Their solution can be written as an eigenvector expan-
sion. In the eigenvector expansion technique the equa-
tions are written in matrix form as,

d2U/d�2 � A U � 0, UT

� 
U2 ,U1 ,U0 ,U�1 ,U�2 ,V2 ,V1 ,V0 ,V�1 ,V�2 � (10)

where A is an appropriate matrix consistent with the
solution vector, U. Since the equations have constant
coefficients, a solution is assumed in the form U � Re��

where R is of the same order as U. Substitution into
equation (10) gives AR � �2R. Using MATLAB, eig-
envalues �li � ��i

2� and corresponding eigenvectors, ri,
are easily obtained. The solution is then given by

U � �
i�1

10

ci ri e
�li� (11)

where terms with positive exponents are dropped for
bounded solutions as � 3 0. The ten constants of inte-
gration, ci, are determined using appropriate boundary
conditions.

The ten boundary conditions at � � 0 are based on the
anti-symmetry which exists. This can be seen by noting
that the yarns are in tension, and rotating Figure 3 by
180° shows that the negative numbered yarns play the
same role as the positive numbered yarns. The boundary
conditions at � � 0 are then given by,

U�1�0� � �1, U�0 �0� � �1, U��1 �0� � �1, U�2 �0�

� �U2 �0�, U��2 �0� � U�2 �0�

V�1�0� � 0, V�0�0� � 0, V��1�0� � 0, V�2�0� �

� V2�0�, V��2�0� � V�2�0� (12)

Once the displacements are found, the stress concen-
tration in the first intact yarn can be calculated. The
physical load in the I yarns is denoted by pi. The non-
dimensional load in the i-th I yarn is defined by Pi, where
pi � TPi (T is the initial tension in the yarn). The total
load in the yarn is pi � T � EA dui /dx. On using equation
(4), this can be written in terms of non-dimensional
quantities as Pi � 1 � dUi/d�. For our example, the value
of P2 at � � 0 (the load in the nearest intact yarn), would
represent the stress concentration factor (actually, the
load concentration factor; P2 � p2/T).Our purpose is to
evaluate how various values of the parameter, e � T/EA
and the angle � affect the stress concentration factor (for
our case, P2 (0)).

The results are given in Figures 4 and 5. In Figure 4,
P2 is plotted against � for various values of the angle, �,
while the parameter e � 0.03 is fixed. While the curves
vary over the range of �, for different values of �, the

stress concentration factor (SCF), as given, P2(0) is in-
dependent of � and has a value of 1.67. In Figure 5, P2

is plotted against � for various values of e, while � is
fixed at 30°. It is clear that the parameter e, has a
negligible effect throughout the range of �. The case of
seven breaks (not shown) indicates a similar trend, with
an SCF of about 2.54. A similar scenario also occurs
with one break, with an SCF of 1.29.

BRAIDED FABRIC MODEL WITH A SLIP REGION

When we include a slip region, where the broken yarns
slip, the analysis becomes rather complex. Since our
interest is in an initial evaluation of the effect of slip on
the SCF (for various values of e and �), we consider the

FIGURE 4. P2 versus � for � � 0°, 30°, 60°; e � 0.03.

FIGURE 5. P2 versus � for e � 0.03, 0.07, 0.1; � � 30°.
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case where only the n � 0 yarn is broken (see Figure 6).
The n � 1, –1 active yarns are intact, and the displace-
ment of yarns n � 2,–2 is neglected. We consider slip-
ping of the broken I yarn in the x-direction only. It is
assumed that there is negligible slipping in the y-direc-
tion. The slipping broken yarn (n � 0), will apply a
friction force, f, to a given II yarn (crossing yarn), which
deflects (dashed curve), so that there are also forces R1

and R2 on the II yarn (Figure 6). The tensile force in the
II yarn consists of the initial tension, T, and the addi-
tional force due to the deflection of the yarn. If we
consider the equilibrium of forces and moments of the II
yarn in a manner similar to that done for the plain weave
fabric configuration [3], R1 and R2 can be determined in
terms of f and the x and y displacements of the I yarns n
� 1,–1.

Products of displacement are neglected with respect to
unity. The process is straightforward, and after much
algebra, the results are

R1 � �
f

2
� Ts�1 �

a3

c�� EAa4u1 �
EAe

2L
u�1 � EAa5v1

R2 � �
f

2
� Ts�1 �

a3

c � � EAa6u1 � EAa7u�1

�
EAa3s

L
v1 � EAa2v�1 (13)

where,

a1 � �e � s2�/L, a2 � sc/L, a3 � 1 � s2/ 2, a4

� a1 � e/ 2L � a3s2/Lc

a5 � a2 � a3s/L, a6 � a3s2/Lc � e/2L, a7 � a1 � e/2L

Recall that L is the distance between yarns, along the
yarn (Figure 2). If equilibrium of the I yarns n � 1, 0, –1
in the x-direction is considered, where the forces f, R1

and R2 on the I yarns (they are in a direction opposite to
those shown in Figure 6) are averaged (“smeared”) over
the unit cell of spacing, L, as in [3], the equations for
these yarns are

EAd2u0 /dx2 � f/L � 0, EAd2u1 /dx2 � R1 /L

� 0, EAd2u�1 /dx2 � R2 /L � 0, (14)

Equations (14) can be written in non-dimensional
form by using equation (4) together with the definition
of an additional dimensionless quantity, f�, where f
� e�eEAf�. Equations (14) then become,

U�1 � c1U1 � U�1/2 � c2V1 � f�/2 � �c3 s/�e (15a)

U �0 � f� � 0 (15b)

U ��1 � c4U1 � c5U�1 � c6V1

� c7V�1 � f�/ 2 � c3s/�e (15c)

where

c1 � 3/ 2 � �1 � 1/c�s2/e, c2 � �c � 1

� s2/ 2�s/e, c3 � �c � 1 � s2/ 2�/c

c4 � �1/2 � s2/ec, c5 � 3/2 � s2/e, c6

� �1 � s2/2�s/e, c7 � sc/e

The governing equations in the slip region consist of
equations (15) and (6) (i � 1, 0, –1) for V1 , V0 and V–1.
It is noted that, because of our assumptions, the equa-
tions for V1 , V0 and V–1 are the same for the so-called
slip region (0 � x � a) (see Figure 6) and the non-slip
region (x � a). These equations are not influenced by the
slipping I yarn (n � 0). Therefore, for the problem in
Figure 6, there are nine independent, second-order dif-
ferential equations, namely, equations (15a, b, c) and
equations (5) and (6) for I � 1, 0, –1. There will be 18
constants of integration in addition to the unknown �f for
a total of 19 unknowns. When the angle, � � 0, these
equations reduce exactly to those of a woven fabric and
involve only the unknowns, U1 , U0 and U–1.

If we define a non-dimensional slip extent, �, by a
� �L/�e��, then the boundary conditions can be formu-
lated as follows. In the slip region (0 � � � �), at � �
0, the following conditions hold.

U�0�0� � �1, U�1 �0� � �U1 �0�, U��1 �0� � U�1 �0�

V�0�0� � 0, V�1�0� � �V1 �0�, V��1 �0� � V�1 �0� (16)

FIGURE 6. Equilibrium of a deflected II yarn (dashed lines)
in the slip region.
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At � � �, there are six continuity conditions for the Ui

displacements and their derivatives (the solutions for V1 ,
V0 and V–1 are the same for each region) at the interface
between region 1 (slip region) and region 2 (non-slip
region). Superscripts denote the region.

U1
1��� � U1

2���, U1
1���� � U1

2����, U0
1��� � U0

2���

U0
1���� � U0

2����, U�1
1 ��� � U�1

2 ���, U�1
1����

� U�1
2���� (17)

In the eigenvector expansion, terms with positive ex-
ponentials in region 2 are dropped for bounded solutions,
so six constants are set equal to zero. There are now only
13 unknowns. Equations (16) and (17) provide 12 con-
ditions. An additional condition comes from the require-
ment that the frictional traction should be continuous on
the I (n � 0) yarn across the boundary, � � �, between
the slipping and non-slipping regions. This implies con-
tinuity of d2 U0 /d�2 at � � �. On using equations (15b)
and (5) for i � 0, this condition becomes

b1�U1 � 2U0 � U�1� � b2�V1 � 2V0 � V�1� � � f� (18)

For selected values of slip extent, �, (which defines
both regions), solutions are found in each region. Bound-
ary and continuity conditions given by equations (16)–
(18) allow calculation of the 13 constants, and therefore,
determination of the displacements. The stress concen-
tration in the intact I yarn (n � 1) is then given by P1 (0)
� 1 � U1

1�(0), and is, therefore, found for each value of
slip extent, �. In Figures 7 and 8, P1 (0) is plotted against
� for different values of the parameter, e, and the angle,
�. It is noted that the stress concentration, P1 (0), de-
creases with increasing slip extent, �. This is consistent
with the idea that slip is a dissipative mechanism, anal-
ogous to matrix yielding in fiber composite sheets [6, 7].
It is also clearly shown that for a range of values of slip
region extent, �, the stress concentration is independent
of the parameter, e, and the angle �. In the case of the
parameter e � T/EA, for a given yarn stiffness, increas-
ing T, and therefore e, would produce higher physical
force levels in the yarns. The non-dimensional quantity,
P1 (0), is however, a ratio of force levels, which does not
change with e. Since it is independent of e, then for very
small e 3 0, it was shown earlier that the equations for
arbitrary values of � could be reduced to those of woven
fabrics, where � is identically zero.

Conclusions

A system of non-dimensional differential equations
for yarn displacements has been derived, applicable to
slit-damaged, braided fabric air-beam structures. Two

quantities appear and play important roles, namely, the
parameter e � T/EA (where T is the remote yarn tension
due to inflation and EA is a measure of yarn stiffness) and
the angle, �, (which is related to the helix angle of the
braided tube). The stress concentration near the broken
yarns is calculated in the case where broken yarns
haven’t slipped and in the case where broken yarns slip.
Since the stress concentration decreases with an increas-
ing slip region, the maximum value will occur for the
non-slip case. For this case it is also shown, analytically,
that when e 3 0, the equations for braided fabrics, for
arbitrary values of �, can be reduced to those of woven
fabrics (where � � 0), implying that the braided fabric
should develop stress concentrations similar to woven
fabrics, near yarn breaks.

To obtain results without the restriction of small e 3
0, the stress concentration is calculated near a slit (a

FIGURE 7. P1(0) versus slip extent �. e � 0.00, 0.04, 0.08; � � 36°

FIGURE 8. P1(0) versus slip extent �. � � 30°, 45°, 60°; e � 0.03.
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series of broken yarns) in the fabric, for various values of
e and � using the full braided fabric equations. This is
done for both the case of no-slip and the case with slip.
The results clearly show that the stress concentration in
the adjacent intact yarn along the line of yarn breaks is
independent of the parameter e, and the angle �. This
means that all that has been learned in the study of
damage in woven fabrics, will be useful for braided
fabric air-beams.
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