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Abstract

In recent years we introduced a number of enhancements to the space–time techniques we developed for computer modeling of
Fluid–Structure Interaction (FSI) problems. These enhancements, which include more sophisticated fluid–structure coupling and
improved mesh generation, are enabling us to address more of the computational challenges involved. Our objective here is to dem-
onstrate the robustness of these techniques in FSI modeling of parachutes involving complex designs. As a numerical example, we
have selected a conceptual parachute design with geometric complexities resembling those seen in some of the advanced parachute
designs proposed and tested in recent times. We describe our FSI modeling techniques and how we compute the descent and glide
performance of this conceptual parachute design.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Computer modeling of the Fluid–Structure Interac-
tions (FSI) involved in parachute aerodynamics has
always been challenging especially because a parachute
is a light structure very sensitive to the unsteadiness of
the aerodynamical forces. The FSI modeling techniques
we developed to address those challenges are based on a
stabilized space–time formulation. We have recently
augmented these techniques with a number of enhance-
ments to increase the robustness and scope of our FSI
modeling. These enhancements include more sophisti-
cated fluid–structure coupling techniques and improved
mesh generation methods. With these enhancements,
we are able to address more of the computational
challenges involved in parachute FSI modeling. The
0045-7930/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compfluid.2005.07.010
challenges we can now address include the type of geo-
metric complexities seen in some of the advanced para-
chute designs proposed and tested.

In our FSI modeling we prefer to use an interface-
tracking technique. In this category of techniques, as
the structure moves and the spatial domain occupied
by the fluid changes its shape, the mesh moves to accom-
modate this shape change and to follow (i.e. ‘‘track’’) the
fluid–structure interface. Moving the fluid mesh to track
the interface enables us to control the mesh resolution
near that interface and obtain more accurate solutions
in such critical flow regions. One of the most well known
examples of the interface-tracking techniques is the Arbi-
trary Lagrangian–Eulerian (ALE) finite element formu-
lation [1]. The interface-tracking technique we use for
discretizing the fluid dynamics equations is the Deform-
ing-Spatial-Domain/Stabilized Space–Time (DSD/SST)
formulation [2–4]. The stabilization is based on the
Streamline-Upwind/Petrov–Galerkin (SUPG) [5,6] and
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Pressure-Stabilizing/Petrov–Galerkin (PSPG) [2] formu-
lations. The SUPG formulation prevents numerical
instabilities that might be encountered when we have
high Reynolds number and strong boundary layers. With
the PSPG formulation, we can use, without numerical
instabilities, equal-order interpolation functions for
velocity and pressure. An earlier version of the pressure
stabilization, for Stokes flows, was introduced in [7].

The DSD/SST formulation was originally developed
as a general purpose interface-tracking technique for
simulation of problems involving moving boundaries
or interfaces, whether fluid–solid or fluid–fluid. Updat-
ing the mesh is based on moving it for as many time
steps as we can and remeshing it only as frequently as
we need to. The mesh moving algorithm is essentially
based on the one introduced in [8], where the motion
of the nodal points is governed by the equations of elas-
ticity. The Jacobian of the transformation from the ele-
ment domain to the physical domain is dropped in the
finite element formulation of the elasticity equations.
This is equivalent to dividing the elastic modulus by
the element Jacobian and results in an increase in the
stiffness of the smaller elements, which are typically
placed near the fluid–structure interfaces. Mesh moving
techniques with comparable features were later intro-
duced in [9].

The DSD/SST formulation was first applied to FSI
problems in [10] for 2D computation of vortex-induced
vibrations of a cylinder, and in [11] for 3D computa-
tion of flow in a flexible, cantilevered pipe. In our
FSI modeling of parachutes, the structural deformation
is governed by the momentum equations for mem-
branes and cables. They are solved using a semi-dis-
crete, finite element formulation in a total Lagrangian
framework (see [12]). We see no compelling reason
to use a space–time formulation for the structural
mechanics equations. The earliest applications of the
DSD/SST formulation to FSI modeling of parachutes
were reported in [13–20].

In modeling of FSI problems with the DSD/SST for-
mulation (or any other interface-tracking technique), at
each time step, we need to solve the fully-discretized,
coupled fluid and structural mechanics and mesh-mov-
ing equations. What technique to use for the solution
of these equations should, to some extent, depend on
the nature of the application problem. With that in
mind, we have developed block-iterative [11,13,16],
quasi-direct [21–23], and direct coupling techniques
[21–23]. The block-iterative technique gives us more flex-
ibility in terms of algorithmic modularity and indepen-
dence of the fluid and structural mechanics solvers and
also better parallel efficiency. The quasi-direct and direct
coupling techniques give us more robust algorithms
for FSI computations where the structure is light. Vari-
ous aspects of FSI modeling, including the coupling
between the equations governing the fluid and structural
mechanics and mesh motion, have also been addressed
by many other researchers (see [24–31]) in recent years.

Our objective here is to demonstrate how we are
addressing the computational challenges involved in
FSI modeling of conceptual parachute designs with geo-
metric complexities similar to those seen in some of the
recently-proposed parachute designs. When the objec-
tive is to be able to quickly respond to the FSI modeling
requirements of a newly-proposed parachute system,
algorithmic robustness becomes the primary consider-
ation instead of algorithmic modularity or parallel
efficiency. In this paper, for FSI modeling of the concep-
tual parachute design we are targeting, we employ the
quasi-direct coupling technique.

The governing equations are reviewed in Section 2.
The finite element formulations are given in Section 3.
In Section 4, we describe the modeling setup for the con-
ceptual parachute design and present the computed
results, including the descent and glide performance.
We end with concluding remarks in Section 5.
2. Governing equations

2.1. Fluid mechanics

Let Xt � Rnsd be the spatial domain with boundary Ct

at time t 2 (0, T). The subscript t indicates the time-
dependence of the domain. The Navier–Stokes equa-
tions of incompressible flows are written on Xt and
"t 2 (0, T) as

q
ou

ot
þ u � $u� f

� �
� $ � r ¼ 0; ð1Þ

$ � u ¼ 0; ð2Þ

where q, u and f are the density, velocity and the external
force, respectively. The stress tensor r is defined as
r(p,u) = �pI + 2le(u), with eðuÞ ¼ ðð$uÞ þ ð$uÞTÞ=2.
Here p is the pressure, I is the identity tensor, l = qm
is the viscosity, m is the kinematic viscosity, and e(u) is
the strain-rate tensor. The essential and natural bound-
ary conditions for Eq. (1) are represented as u = g on
(Ct)g and n Æ r = h on (Ct)h, where (Ct)g and (Ct)h are
complementary subsets of the boundary Ct, n is the unit
normal vector, and g and h are given functions. A diver-
gence-free velocity field u0(x) is specified as the initial
condition.
2.2. Structural mechanics

Let Xs
t � Rnxd be the spatial domain with boundary

Cs
t , where nxd = 2 for membranes and nxd = 1 for cables.

The parts of Cs
t corresponding to the essential and natu-

ral boundary conditions are represented by ðCs
t Þg and
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ðCs
t Þh. The superscript ‘‘s’’ indicates the structure. The

equations of motion are written as

qs d2y

dt2
þ g

dy

dt
� fs

� �
� $ � rs ¼ 0; ð3Þ

where qs, y, fs and rs are the material density, structural
displacement, external force and the Cauchy stress ten-
sor [32,33], respectively. Here g is the mass-proportional
damping coefficient. The damping provides additional
stability and can be used where time-accuracy is not re-
quired, such as in determining the deformed shape of the
structure for specified fluid mechanics forces acting on
it. The stresses are expressed in terms of the 2nd Piola–
Kirchoff stress tensor S, which is related to the Cauchy
stress tensor through a kinematic transformation. Under
the assumption of large displacements and rotations,
small strains, and no material damping, the membranes
and cables are treated as Hookean materials with linear
elastic properties. For membranes, under the assump-
tion of plane stress, S becomes (see [12]):

Sij ¼ �kmGijGkl þ lm½GilGjk þ GikGjl�
� �

Ekl; ð4Þ

where for the case of isotropic plane stress
�km ¼ 2kmlm=ðkm þ 2lmÞ. Here, Ekl are the components
of the Cauchy–Green strain tensor, Gij are the compo-
nents of the contravariant metric tensor in the original
configuration, and km and lm are the Lamé constants.
For cables, under the assumption of uniaxial tension,
S becomes S11 = EcG

11G11E11, where Ec is the Young�s
modulus for the cable.
3. Finite element formulations

3.1. DSD/SST formulation of fluid mechanics

The DSD/SST formulation [2–4], which was origi-
nally based on a Galerkin/least-squares method, is writ-
ten over a sequence of N space–time slabs Qn, where Qn

is the slice of the space–time domain between the time
levels tn and tn+1. At each time step, the integrations
are performed over Qn. The space–time finite element
interpolation functions are continuous within a space–
time slab, but discontinuous from one space–time slab
to another. The notation ð�Þ�n and ð�Þþn denotes the func-
tion values at tn as approached from below and above.
Each Qn is decomposed into elements Qe

n, where
e = 1,2, . . . , (nel)n. The subscript n used with nel is for
the general case in which the number of space–time ele-
ments may change from one space–time slab to another.
The essential and natural boundary conditions are
imposed over (Pn)g and (Pn)h, the complementary sub-
sets of the lateral boundary of the space–time slab.
The finite element trial function spaces ðSh

uÞn for veloc-
ity and ðSh

pÞn for pressure, and the test function spaces
ðVh
uÞn and ðVh

pÞn ð¼ ðSh
pÞnÞ are defined by using, over

Qn, first-order polynomials in space and time. The ver-
sion of the DSD/SST formulation introduced in [34] is
based on SUPG/PSPG stabilization and can be written
as follows: given ðuhÞ�n , find uh 2 ðSh

uÞn and ph 2 ðSh
pÞn

such that 8wh 2 ðVh
uÞn and 8qh 2 ðVh

pÞn:Z
Qn

wh �q ouh

ot
þuh �$uh� fh

� �
dQ

þ
Z

Qn

eðwhÞ : rðph;uhÞdQ�
Z
ðP nÞh

wh �hh dP

þ
Z

Qn

qh$ �uh dQþ
Z

Xn

ðwhÞþn �q ðuhÞþn �ðuhÞ�n
� �

dX

þ
XðnelÞn

e¼1

Z
Qe

n

1

q
sSUPGq

owh

ot
þuh �$wh

� �
þ sPSPG$qh

� �

� ½Łðph;uhÞ�qfh�dQþ
XðnelÞn

e¼1

Z
Qe

n

mLSIC$ �whq$ �uh dQ¼ 0; ð5Þ

where

Łðqh;whÞ ¼ q
owh

ot
þ uh � $wh

� �
� $ � rðqh;whÞ. ð6Þ

Here sSUPG, sPSPG and mLSIC are the SUPG, PSPG and
LSIC (least-squares on incompressibility constraint) sta-
bilization parameters. This formulation is applied to all
space–time slabs Q0,Q1,Q2, . . . ,QN�1, starting with
ðuhÞ�0 ¼ u0.

There are various ways of defining the stabilization
parameters. The definitions given in [34] are used in
the computations reported in this paper:

sSUPG ¼
1

s2
SUGN12

þ 1

s2
SUGN3

� ��1
2

; ð7Þ

sSUGN12 ¼
Xnen

a¼1

oNa

ot
þ uh � $N a

����
����

 !�1

;

sSUGN3 ¼
h2

RGN

4m
; ð8Þ

hRGN ¼ 2
Xnen

a¼1

jr � $N aj
 !�1

; r ¼ $kuhk
k$kuhkk ; ð9Þ

sPSPG ¼ sSUPG; ð10Þ
mLSIC ¼ sSUPGkuhk2. ð11Þ

For more ways of calculating sSUPG, sPSPG and mLSIC,
see [35,34,36].

3.2. Semi-discrete formulation and time-integration of

structural mechanics

With yh and wh coming from appropriately defined
trial and test function spaces, respectively, the semi-
discrete finite element formulation of the structural
mechanics equations are written as
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Z
Xs

0

wh � qs d2yh

dt2
dXs þ

Z
Xs

0

wh � gqs dyh

dt
dXs

þ
Z

Xs
0

dEh : Sh dXs ¼
Z

Xs
t

wh � th þ qsfs
� �

dXs. ð12Þ

The fluid mechanics forces acting on the structure are
represented by vector th. This term is geometrically non-
linear and thus increases the overall nonlinearity of the
formulation. The left-hand-side terms of Eq. (12) are re-
ferred to in the original configuration and the right-
hand-side terms in the deformed configuration at time
t. From this formulation, at each time step, we obtain
a nonlinear system of equations. In solving that nonlin-
ear system with an iterative method, we use the follow-
ing incremental form:

M

bDt2
þ ð1� aÞcC

bDt
þ ð1� aÞK

� �
Ddi ¼ Ri; ð13Þ

where C = gM. Here M is the mass matrix, K is the con-
sistent tangent stiffness matrix associated with the inter-
nal elastic forces, C is a damping matrix, Ri is the
residual vector at the ith iteration, and Ddi is the ith
increment in the nodal displacements vector d. The
damping matrix C is used only in stand-alone structural
mechanics computations with specified fluid mechanics
forces, while establishing a starting shape for the FSI
computations. In Eq. (13), all of the terms known from
the previous iteration are collected into the residual vec-
tor Ri. The parameters a, b, c are part of the Hilber–
Hughes–Taylor [37] time-integration scheme used here.

3.3. Quasi-direct coupling

The formulation for the quasi-direct coupling approach
[21–23] is written as follows:Z

Qn

wh
1E � q

ouh

ot
þ uh � $uh � fh

� �
dQ

þ
Z

Qn

eðwh
1EÞ : rðph; uhÞdQ�

Z
ðP nÞh

wh
1E � h

h
1E dP

þ
Z

Qn

qh
1E$ � uh dQþ

Z
Xn

ðwh
1EÞ
þ
n � q ðuhÞþn � ðuhÞ�n

� �
dX

þ
XðnelÞn

e¼1

Z
Qe

n

1

q
sSUPGq

owh
1E

ot
þ uh � $wh

1E

� �
þ sPSPG$qh

1E

� �

� ½Łðph; uhÞ � qfh�dQ

þ
XðnelÞn

e¼1

Z
Qe

n

mLSIC$ � wh
1Eq$ � uh dQ ¼ 0; ð14Þ

Z
Qn

qh
1I$ � uh dQþ

XðnelÞn

e¼1

Z
Qe

n

1

q
sPSPG$qh

1I

	 

� ½Łðph; uhÞ � qfh�dQ ¼ 0; ð15ÞZ

C1I

ðwh
1IÞ
�
nþ1 � ðuh

1IÞ
�
nþ1 � uh

2I

� �
dC ¼ 0; ð16Þ
Z
Qn

wh
1I

� ��
nþ1
� q ouh

ot
þ uh �$uh � fh

� �
dQ

þ
Z

Qn

e wh
1I

� ��
nþ1

� �
: rðph;uhÞdQ�

Z
ðP nÞh

wh
1I

� ��
nþ1
� hh

1I dP

þ
XðnelÞn

e¼1

Z
Qe

n

1

q
sSUPGq

oðwh
1IÞ
�
nþ1

ot
þ uh �$ðwh

1IÞ
�
nþ1

� �� �

� Łðph;uhÞ � qfh	 

dQ

þ
XðnelÞn

e¼1

Z
Qe

n

mLSIC$ � wh
1I

� ��
nþ1

q$ � uh dQ ¼ 0; ð17Þ

Z
ðX2Þ0

wh
2 � q2

d2yh

dt2
dXþ

Z
ðX2Þ0

wh
2 � gq2

dyh

dt
dX

þ
Z
ðX2Þ0

dEh : Sh dX ¼
Z

X2

wh
2 � q2fh

2 dX

þ
Z

X2E

wh
2E � hh

2E dX�
Z

X2I

wh
2I � hh

1I dX. ð18Þ

The notation used here is slightly different from that
used in Eqs. (5) and (12). Here, subscripts 1 and 2 are
used for fluid and structure respectively, and I and E
indicate the ‘‘interface’’ and ‘‘elsewhere in the domain’’,
respectively. The traction force is denoted by h. In this
formulation, ðuh

1IÞ
�
nþ1 and hh

1I (the fluid velocity and stress
at the interface) are treated as separate unknowns, and
Eqs. (16) and (17) can be seen as equations correspond-
ing to these two unknowns, respectively. The structural
displacement rate at the interface, uh

2I, is derived from yh.
This formulation allows for cases where the fluid and
structure meshes at the interface are not identical. If
they are identical, the same formulation can still be used,
but one can also use its reduced version where Eq. (16) is
no longer needed and hh

1I is no longer treated as a sepa-
rate unknown.

Remark 1. Full discretizations of the quasi-direct for-
mulation described by Eqs. (14)–(18) lead to coupled
nonlinear equation systems that need to be solved at
every time step. These coupled nonlinear equation
systems can be written as follows:

N1ðd1; d2Þ ¼ F1; ð19Þ
N2ðd1; d2Þ ¼ F2; ð20Þ

where subscripts 1 and 2, again, denote the fluid and
structure, respectively. Solution of these equations with
the Newton–Raphson method would necessitate at
every Newton–Raphson step solution of the following
linear equation system:

A11x1 þ A12x2 ¼ b1; ð21Þ
A21x1 þ A22x2 ¼ b2; ð22Þ

where b1 and b2 are the residuals of the nonlinear equa-
tions, x1 and x2 are the correction increments for d1 and
d2, and Abc = oNb/odc. Careful inspection of Eq. (17) re-
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Fig. 1. Shape and dimensions of unstressed parachute. The adjacent
arms of the ‘‘cross’’ are stitched together along the edges marked with
red color (For interpretation of the references in colour in this figure
legend, the reader is referred to the Web version of this article.)
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veals that we could have convergence difficulties when
the stabilization terms, which only contribute to the
off-diagonal entries of A, are dominant. In such cases,
convergence of the iterative solution can be improved
by activating the shortcut technique proposed in
[36,38]. In this technique, to reduce ‘‘over-correcting’’
(i.e. ‘‘over-incrementing’’) the structural displacements,
we increase the mass matrix contribution to A22. This
is achieved without altering b1 or b2 (i.e. F1 � N1(d1,d2)
or F2 � N2(d1,d2)), and therefore when the Newton–
Raphson iterations converge, they converge to the solu-
tion of the problem with the correct structural mass.

Remark 2. A slightly altered version of the formulation
given by Eqs. (14)–(18) was introduced in [39] by sup-
pressing the stabilization terms in Eq. (17):Z

Qn

wh
1I

� ��
nþ1
� q ouh

ot
þ uh � $uh � fh

� �
dQ

þ
Z

Qn

e wh
1I

� ��
nþ1

� �
: rðph; uhÞdQ

�
Z
ðP nÞh

wh
1I

� ��
nþ1
� hh

1I dP ¼ 0. ð23Þ

Our recent experiences show that this leads to a more ro-
bust solution algorithm, and good convergence perfor-
mance can be achieved without augmenting A22 as
described in the earlier remark.
Fig. 2. Inflated parachute.
4. Test computations

4.1. Model setup

As the test case, we have selected a conceptual para-
chute design with geometric complexities similar to
those seen in some of the advanced parachute designs
proposed and tested in recent times. The shape and
dimensions of the unstressed parachute are shown in
Fig. 1. It is in the shape of a cross formed by two bands
that are each 46.9 ft long and 21.1 ft wide. The adjacent
arms of the ‘‘cross’’ are stitched together along the edges
marked with red color in Fig. 1. The stitching forms four
‘‘vents’’ with edges marked with blue color. The edges of
the skirt, marked with green color, are attached to 28
suspension lines, each 21.0 ft long. The suspension lines
connect to 4 risers, each 4.0 ft long. The risers connect to
the payload. The parachute is modeled with membranes
and cables, and the payload is modeled with a point
mass.

The membrane stiffness, density, and thickness are set
to 2.0 · 105 lb/ft2, 2.374 slugs/ft3, and 1.0 · 10�4 ft,
respectively. The cable stiffness, density, and cross-sec-
tional area are set to 1.117 · 107 lb/ft2, 2.374 slugs/ft3,
and 3.358 · 10�5 ft2. For air, as the density and kine-
matic-viscosity values we use 2.378 · 10�3 slugs/ft3 and
1.615 · 10�4 ft2/s. The Reynolds number, based on a
descent speed of 16 ft/s and a length scale of 21.1 ft, is
2.1 · 106.

The parachute canopy structure is discretized using a
finite element mesh with 10,973 nodes and 21,504
elements. A constant air pressure is applied to inflate
the parachute to its initial shape, which is determined
with a stand-alone structural mechanics computation.
The inflation-pressure is set to 1.3 times the stagnation



Fig. 3. Fluid (top) and structure (bottom) meshes at the interface.
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pressure, calculated based on the descent speed of 16 ft/s.
Fig. 2 shows the inflated parachute.

To limit the number of unknowns in the fluid
mechanics part of the problem, we use a coarser fluid
mechanics mesh at the fluid–structure interface. The
interface mesh for the fluid has 2797 nodes and 5376 ele-
ments. Fig. 3 shows the fluid and structure meshes at the
interface. We note that the quasi-direct coupling
approach described in Section 3.3 allows for incompati-
ble fluid and structure meshes at the interface. The vol-
ume meshes generated for the fluid typically have
approximately 100,000 nodes and 600,000 elements.
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Fig. 5. Payload position as a function of time. The symbols Y1 and Y2

denote the payload position along the x1 and x2 directions. The
intended glide direction is the x1 direction.
4.2. Computation of the descent

In this set of computations we test two different pay-
load weights: 222 lb and 350 lb. We use the quasi-direct
coupling approach described by Eqs. (14)–(18). To fur-
ther improve the convergence of the iterative solution,
we activate the shortcut technique described in Section
3.3. In doing that, the mass matrix contribution to A22

increased by a factor 3.0. Both computations were car-
ried out without any remeshing.

Fig. 4 shows the payload and canopy descent speeds
with payload weighing 222 lb and 350 lb. As seen from
the plots, the parachute system reaches a near steady
descent speed of 15.7 ft/s with payload weighing 222 lb
and 18.3 ft/s with payload weighing 350 lb.

4.3. Computation of the gliding

We compute the gliding performance of the parachute
system with the payload weighing 222 lb. We attain glid-
ing in the intended direction (x1 direction) by pulling one
of the risers by 2.0 ft and affecting a canopy shape change
that generates a force in the x1 direction. The parachute
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is descending in the x3 direction. The riser is pulled rather
quickly, within a period less than 0.3 s. In this FSI com-
putation, we use the quasi-direct coupling approach
described by Eqs. (14)–(16), Eqs. (23) and (18). The oNa

ot
term is dropped from the definition of sSUGN12 given
by Eq. (8). For fluid mechanics volume-mesh generation,
we use an advanced automatic mesh generator [40] with
improved mesh generation capabilities critical to para-
chute FSI computations. The computation was carried
out without any remeshing.
Fig. 8. Flow conditions just before (top-left) and just after (top-right) the ri
during the subsequent period. In each frame, the left, right, and bottom plane
vorticity, and pressure.
Fig. 5 shows the payload position along the x1 direc-
tion, denoted by the symbol Y1, as a function of time.
We also see, even before the riser is pulled, a glide in
an unintended direction (x2 direction). We believe that
this unintended glide direction is selected somewhat ran-
domly, very much like what typically happens in a bifur-
cation problem, from among the possible directions.
The payload position along the x2 direction, denoted
by the symbol Y2, is also shown in Fig. 5 as a function
ser is pulled, as well as at two instants (bottom-left and bottom-right)
s show, respectively, the velocity vectors colored with their magnitudes,
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of time. Fig. 6 shows the payload trajectory in the Y1–Y2

plane. Fig. 7 shows the payload velocity, as a function
time, in the x1 and x2 directions. We clearly see an
increase in the glide velocity in the intended direction
after the riser is pulled. Fig. 8 shows the flow conditions
just before and just after the riser is pulled, as well as at
two instants during the subsequent period.
5. Concluding remarks

We have described how we are addressing the compu-
tational challenges involved in FSI modeling of
conceptual parachute designs with geometric complexi-
ties similar to those seen in some of the recently-pro-
posed parachute designs. The core method in our FSI
modeling is the Deforming-Spatial-Domain/Stabilized
Space–Time (DSD/SST) formulation, developed origi-
nally for flow problems with moving boundaries and
interfaces. A mesh moving method that reduces the need
for remeshing is also an important component of our
overall computational strategy. In recent years we added
a number of enhancements to this computational strat-
egy, including more sophisticated fluid–structure cou-
pling techniques and improved mesh generation. The
quasi-direct coupling technique we used for the numeri-
cal examples of this paper gives us more algorithmic
robustness. This is particularly important for better con-
vergence of the iterative solution process when the struc-
ture is light and very sensitive to the unsteadiness of the
aerodynamical forces. The improved mesh generation
capability is playing an important role in addressing
the challenges involved in representing the geometrically
complex parachute canopies. As test cases with the con-
ceptual parachute design we considered in this paper, we
computed its decent for two different payload weights, as
well as its glide, which was induced by pulling one of the
risers. In addition to the glide in the intended direction,
we also observed, even before the riser was pulled, a glide
in an unintended direction. At this time, we believe that
this unintended glide direction is selected somewhat ran-
domly from among a set of possible directions. Better
understanding of that unintended glide and its interac-
tion with the intended glide will be among the topics
we plan to study further in the future. We believe that
such ‘‘physical explorations’’ will be more and more
within our reach, because we are continuously increasing
the robustness and scope of our FSI modeling and we are
now able to address more of the computational chal-
lenges involved.
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