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A micromechanical model for extension of a
tightly packed bundle of aligned short fibres
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Abstract: Micromechanical models for the interaction between discrete short fibres in idealized bundles
are developed and are used to investigate fibre strain profiles, slippage behaviour with increasing
extension, bundle load-extension, and tangent stiffness properties. The modeling approach permits
abutting fibres to interact by elastic surface shear forces in gripping regions and inelastic frictional slip in
slipping regions, where transition from gripping to slipping at a contact position occurs as a linear elastic–
perfectly plastic function of the interfibre relative displacement. Results show that for typical staple fibre
dimensions and physical properties, a short fibre composite model for the fibre strain profile provides
a good approximation to the average fibre strain profile occurring along fibres embedded in bundles.
For one fibre assembly considered, results for bundle tangent stiffness indicate that, with increasing
extension, average bundle stiffness may be expected to decrease from about 0.8 to 0.5 relative to a bundle
of similar but continuous fibres, with 0.5 being reached at the point of collapse by localized slippage.

Key words: Fibre bundle, staple yarn, slippage, friction, theoretical model, stiffness

INTRODUCTION

An elusive goal of many textile mechanics studies has been
to relate the tensile extension behaviour of staple yarns to
the properties of the constituent fibres and the detailed
structural geometry of the yarn. Generally, micromechan-
ical models or assumptions are used to treat the effect of
fibre discontinuities and interfibre slip and define the re-
sulting stress profile along fibres. A yarn structural model is
then used to determine the yarn load by integrating the fi-
bre stresses over the yarn cross section, taking into account
the distribution of fibres in the yarn and the orientation or
obliquity effect due to twist. Due to the overall complexity
of the task, only the simplest assumptions are made at the
micromechanical level regarding the interactions between
neighbouring fibres. In the present work, the interactions
between discrete aligned short fibres in an idealized bun-
dle are examined in-depth. The interface between abutting
fibres is assumed to be partially slipping and partially grip-
ping, with slipping regions occurring near fibre tips. The
growth of slipping regions with increasing bundle exten-
sion is investigated and is used to elucidate the self-locking
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behaviour of staple yarns. Results for the load-extension
behaviour of the idealized bundle provide an insight into
the relationship between fibre elastic properties and the
tangent stiffness of bundles of short fibres.

The simplest and most commonly used model for the
interaction of an individual staple fibre with neighbours
within a fibrous assembly structure results from treating
the surrounding fibres as a homogeneous medium and as-
suming that the fibre slips relative to the medium in regions
near the fibre tips. All load transfer, occurring through sur-
face frictional shear stresses, is assumed to occur within the
slipping regions. The model and associated fibre surface
shear and axial stresses are exhibited in Figure 1 (repro-
duced from Shao et al. 2005). Shao and coworkers refer
to this model as the short fibre composite model (because
of its correspondence to an isolated fibre in a matrix) and
use it successfully in a comprehensive modeling approach
to predict yarn strength, load-extension curves, and cyclic
response. It is essentially the same simple model adopted
by Hearle (1965) to analyze the mechanics of twisted staple
yarns; Hearle provides an enhanced exposition of the model
in a book chapter (Hearle, 1989, pp. 40–43). An aim of the
present work is to examine fibre interactions and the rela-
tionship between macroscopic and microscopic behaviour
seen in idealized bundles of discrete short fibres and com-
pare with the extreme case of averaging represented by the
short fibre composite model. It will be shown that the short
fibre composite model provides a good approximation for
the behaviour of bundles of short fibres under realistic
assumptions about fibre properties and bundle geometry.

Copyright C© 2008 The Textile Institute 101 TJTI 2008 Vol. 99 No. 2 pp. 101–109
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T. A. Godfrey

Figure 1 A composite model to represent a fibre in staple
yarn and stress distribution along the fibre.

MODELING GRIPPING AND SLIPPING INTERACTIONS
BETWEEN FIBRES

In order for a bundle of fibres to remain locked, relative mo-
tion or slip between fibres must be inhibited to a degree.
Fibre-to-fibre interfaces may be partially slipping, but an
appropriate network of gripping locations must exist to
prevent drafting of the bundle. Fibres that slip completely
along their length carry tension due to frictional slip trac-
tions; however, the development of large slip displacements
between the fibre and its neighbours is not inhibited, and
the fibre may pull out of the bundle.

We consider a tightly packed bundle of perfectly aligned
short fibres. As such, the idealized bundle is not intended
to faithfully represent the local arrangement of fibres in
real fibrous assemblies, where the complicating factors of
fibre crimp, misalignment, entanglements, and, in twisted
yarns, migration, are present to greater or lesser degrees.
The emphasis here is on bringing out the effects of inter-
actions between discrete fibres, where the only concession
to the presence of the overall fibrous structure in which
the bundle is embedded is the assumption of a simple uni-
form lateral pressure consolidating the bundle. Although
the bundles modeled here are highly idealized, we envision
the assumed configurations as a fair approximation to con-
ditions at the core of a ring-spun cotton or polyester yarn,
where we may expect a coherent structure with a high-fibre
packing density (Goswami et al., 1991).

The coordinate x gives the position of points along the
axis of the fibre bundle. The bundle is quasi-statically ex-
tended such that, at a given instant, the nominal or average
strain of the bundle is ε0. If the bundle is considered to be

Figure 2 Constitutive behaviour of interfibre contact line
shear traction.

a portion of a twisted yarn, bundle extension arises from
extension of the yarn in which it is embedded and is ac-
companied by increasing lateral stress due to yarn twist.
The average axial displacement of points on the nth fibre
is denoted un = un (x). Suppose fibres n and n+ 1 abut
in a region x(1) ≤ x ≤ x(2). A shear traction of qn,n+1(x),
with dimension of force/length, is exerted on fibre n by
fibre n+ 1 along the contact line, where qn,n+1(x) acts in
the positive x direction for un+1 > un . For gripping con-
tact in the region x(1) ≤ x ≤ x(2), we assume (Godfrey and
Rossettos, 2001) that the shear traction is proportional to
the difference in average displacement of the two abutting
fibres, written as

qn,n+1 = k(un+1 − un ). (1)

The proportionality factor k is interpreted as an elastic
constant representing shearing of the abutting fibres along
the contact line. We assume shear traction is limited by
the “frictional strength” of the contact, where the overall
behaviour may be regarded as elastic-perfectly plastic, as
illustrated in Figure 2. For slipping contact, the shear trac-
tion takes the limiting value q s. Differences between static
and kinetic friction are neglected.

Specific regions along the contact line between two abut-
ting fibres may be gripping or slipping at a given instant
in the extension process. Generally, as will be shown later,
slipping regions tend to grow with increasing extension at
the expense of an adjoining gripping region. Suppose along
a contact line between two fibres, the region x(1) ≤ x ≤ x(2)

is slipping and the region x(2) ≤ x ≤ x(3) is gripping at a
given ε0. The assumption of elastic–perfectly plastic be-
haviour requires that the shear traction be continuous at
x = x(2). This continuity condition will be further devel-
oped in the following section.

DEVELOPMENT OF PERFECT LATTICE MODEL

Consider the perfect repeating lattice of identical fibres
exhibited in Figure 3a. The symmetry of this idealized

102TJTI 2008 Vol. 99 No. 2 Copyright C© 2008 The Textile Institute
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A micromechanical model for extension of a tightly packed bundle of aligned short fibres

Figure 3 (a) Perfect lattice fibre bundle. (b) Unit cell.

geometry makes a closed-form symbolic solution feasible.
The number of neighbouring fibres (coordination num-
ber), m , is shown as four in Figure 3a, indicating square
packing. A unit cell is exhibited in Figure 3b, and the loca-
tion of the unit cell in the fibre bundle lattice is identified
in Figure 3a. The unit cell is placed so that the origin is at
the midpoint of the fibre-to-fibre overlap, and the end of
the unit cell is at fibre 2 midpoint.

The fibres are modeled as uniform linear elastic rods
loaded by surface shear tractions arising from interactions
with abutting fibres. The fibre load-displacement relation
is given by

pn = EA
dun

dx
(2)

where pn (x) denotes the axial load in the nth fibre, EA is
the fibre extensional stiffness, and dun

/
dx is the axial strain

in fibre n.

Force equilibrium of fibres in lattice

The unit cell is divided into region I (0 ≤ x < a), region II
(a ≤ x < b ), and region III (b ≤ x < d ), where, respec-
tively, abutting fibre surfaces grip, slip, and fibre surfaces
do not make contact. In what follows, the force equilibrium
equations will be developed for the three regions.

In region I, fibre 1 grips m abutting fibres. The m abut-
ters have the same displacement as fibre 2 in the unit cell.
Shear tractions on fibre 1 from the abutting fibres are writ-

ten using Equation (1), where it is assumed that the con-
tributions from each abutter may be superposed. Using
Equation (2), axial force equilibrium on a differential ele-
ment of fibre 1 may be written as

EA
d 2u1

dx2 + mk(u2 − u1) = 0. (3)

Similarly, m abutters grip fibre 2, each abutter having
the displacement of fibre 1. Equilibrium of fibre 2 is given
by

EA
d 2u2

dx2
+ mk(u1 − u2) = 0. (4)

In region II, slip occurs along the interface. The slip
traction acts in the positive direction on fibre 1 and in the
negative direction on fibre 2. Therefore, the equilibrium
equations become

EA
d 2u1

dx2 + mqs = 0 (5)

and

EA
d 2u2

dx2 − mqs = 0. (6)

103Copyright C© 2008 The Textile Institute TJTI 2008 Vol. 99 No. 2
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The second fibre is alone in region III, without surface
tractions from neighbouring fibres. Therefore, we have

d 2u2

dx2 = 0. (7)

Boundary and continuity conditions

The lattice is extended to nominal strain ε0, resulting in
a nominal strain of ε0 in the periodic unit cell. As such, a
displacement boundary condition, written as

u2(d ) = ε0d , (8)

is used to extend the unit cell.
At the origin, symmetry implies that tensions in fibres

1 and 2 must be the same. In addition, while individual
fibre displacements are permitted at the origin, no overall
(average) displacement of the assembly may occur. These
conditions may be written as

p1(0) = p2(0) (9)

and

u1(0) = −u2(0). (10)

Fibre 1 has a stress-free end at x = b . We require that
the strain vanish at that point, therefore,

du1

dx

∣∣∣∣
x=b

= 0. (11)

Both fibres are continuous at x = a; therefore, fibre dis-
placements and strains are continuous across the boundary
of regions I and II (x = a). In addition, the shear traction
is continuous across the boundary between the gripping
and slipping region, that is, regions I and II. Fibre 2 has
continuous displacement and strain across the boundary
of regions II and III (x = b ). These continuity conditions
may be written as

u I
i (a) = u II

i (a),
duI

i

dx

∣∣∣∣∣
x=a

= duII
i

dx

∣∣∣∣∣
x=a

, i = 1, 2, (12)

qs = k
{

u I
2(a) − u I

1(a)
}
, (13)

u II
2 (b ) = u III

2 (b )
duII

2

dx

∣∣∣∣∣
x=b

= duIII
2

dx

∣∣∣∣∣
x=b

, (14 a,b)

where Roman numeral superscripts refer to the displace-
ment solution in the respective region.

Nondimensionalization

Dimensionless position coordinate and displacement vari-
ables are introduced, defined by

x =
√

EA/mkξ, ui = ε0

√
EA/mkUi , i = 1, 2. (15 a,b)

Equations (15a) and Equations (15b) are substituted into
the governing equations, yielding are nondimensional
forms. Equilibrium equations, by region, become

region I

U′′
1 + U2 − U1 = 0, U′′

2 + U1 − U2 = 0, (16)

region II

U′′
1 + Qs = 0, U′′

1 − Qs = 0, (17)

region II

U′′
2 = 0, (18)

where primes denote differentiation with respect to ξ and
Qs = qs

ε0

√
m/kEA.

The boundary and continuity conditions become

U2(d̄ ) = d̄ , (19)

U′
1(0) = U′

2(0), U1(0) = −U2(0), (20a,b)

U′
1(b̄ ) = 0, (21)

UI
i (ā) = UII

i (ā), U′I
i (ā) = U′II

i (ā), i = 1, 2, (22 a,b)

Q s = U I
2 (ā) − U I

1 (ā), (23)

U I I
2 (b̄ ) = U I I I

2 (b̄ ), U′ I I
2 (b̄ ) = U′ I I I

2 (b̄ ), (24)

where the dimensionless parameters ā, b̄ , and d̄ are defined,
using Equation (15a), as (a, b , d ) = √

EA/mk(ā, b̄ , d̄ ). In
the dimensionless position coordinate, regions I through
III are defined as 0 ≤ ξ < ā, ā ≤ ξ < b̄ , and b̄ ≤ ξ < d̄ ,
respectively.

Solution in each region

The solution in region I is accomplished by writing the
system of equations, that is, Equations (16a) and (16b), in
matrix form and adopting an eigenvector expansion ap-
proach, as illustrated for a similar boundary value problem
by Godfrey and Rossettos (1999). The solution is written as

UI
1 = C1 exp(−

√
2ξ ) + C2 exp(

√
2ξ ) + C3ξ + C0 (25)

UI
2 = −C1 exp(−

√
2ξ ) − C2 exp(

√
2ξ ) + C3ξ + C0.

(26)

The system has a zero eigenvalue, which leads to the “rigid
body” displacement term C0, and an eigenvalue of λ2 =
2, resulting in the exponential terms. The term C3ξ is a
particular solution, which is required to satisfy continuity
conditions at ξ = ā .

104TJTI 2008 Vol. 99 No. 2 Copyright C© 2008 The Textile Institute
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A micromechanical model for extension of a tightly packed bundle of aligned short fibres

The solutions in regions II and III are obtained easily,
and written as

UII
1 = −1

2
Qs ξ

2 + C4ξ + C5 (27)

UII
2 = 1

2
Qs ξ

2 + C6ξ + C7 (28)

UIII
2 = C8ξ + C9. (29)

The 10 integration constants and parameter Q s in the so-
lutions, Equations (25)–(29), are determined to satisfy the
11 continuity and boundary conditions, Equations (19)–
(24).

PHYSICALLY MEANINGFUL VALUES OF
DIMENSIONLESS LENGTH PARAMETERS

We assume that the shearing constant k is approximately
equal to the fibre shear modulus, k ≈ GLT. Actually, k
will be somewhat less than GLT because k reflects the de-
formation of abutting fibres along a contact line and the
combined structure is not as rigid as a perfect block of
material in homogeneous shear. Using the nondimension-
alization scheme, making the substitutionA = π D2/4 for
circular fibres, where D is the fibre diameter,

(ā, b̄ , d̄ ) ≈ m
π 1/2

D−1
(√

E/GLT

)−1
(a, b , d ) . (30)

Values of E/GLT range from 5 to 50 for most textile fi-
bres, with higher values for high-strength fibres, up to
about 300 for poly p-phenylene-2,6-bezobisoxazole (PBO).
Therefore, taking m to be 4, the value of the scale factor

m
π1/2 (

√
E/GLT)−1is in the range of 0.1–1.0. Staple length

is approximately four d in the model, so for proper order
of magnitude we take d to be ∼10−2 m, and D to be ∼10−5

m. Therefore, d /D ∼ 1000. Using Equation (30), with the
scale factor and d /D estimates, values of d̄ may be seen
to range from 100 to 1000. Considering the likelihood that
k < GLT, we extend the lower end of the range down to 50.

RESULTS AND DISCUSSION

Fibre strain profiles in perfect lattice and shifted
lattice models

The strain in fibre 2 is exhibited in Figure 4 for the case of
d̄ = 50, b̄ = 40, and āvalues of 30, 35 and 40, respectively.
The strain profile is symmetric about the fibre midpoint;
only the left half of the profile is shown in the figure. Noting
that slip region length is b̄– ā , higher values of ācorrespond
to shorter slip regions near fibre tips, where the ā = 40 case
represents a completely nonslipping interface. Increasing
fibre-to-fibre slip region extent is seen to decrease peak
strains and lengthen the strain recovery regions near fibre
tips. In all cases, strain in the nonoverlapping fibre region
is two times the strain in the overlapped region. This is a
consequence of the packing of fibres in the lattice, where

Figure 4 Strain in fibre 2, perfect lattice model, d̄ = 50, b̄ =
40, and ā values as indicated.

Figure 5 Strain in fibre 2, perfect lattice model, d̄ = 150,
b̄ = 120, and ā values as indicated.

the packing density is twice as high in the overlapped versus
nonoverlapped regions (see Fig. 3a).

The fibre 2 strain profiles for d̄ = 150, b̄ = 120, and
āvalues of 90, and 120 (nonslip) are shown in Figure 5. At
these larger values of dimensionless length, the curves are
seen to exhibit sharper corners compared with the d̄ = 50
results. This can be understood through the elastic shear-
ing mechanism of load transfer and the nondimensional-
ization scheme. Higher values of d̄ for a given physical
length d result from increasing values of the ratio of shear
stiffness to axial stiffness, that is, mk/EA. As shear stiff-
ness increases relative to axial stiffness, elastic load transfer
occurs over a shorter physical length of abutting fibre con-
tact line and axial strains change rapidly along the fibre
length. Note that an increased value for m , to, say, six
for closest packing, has the same effect as increased shear
stiffness. Therefore, we see nearly step function behaviour
in the strain profile for the completely nonslipping case
and sharp corners in the partially slipping case. In particu-
lar, for the partially slipping case, the elastic load transfer
mechanism can be neglected entirely—the fibre strain pro-
file is essentially identical to that obtained for the simple
assumption that all shear tractions occur in the slipping
regions.

In actual fibre bundles, fibre ends are nearly uniformly
distributed along the bundle length. In contrast, the com-
plete alignment of fibre ends present in the perfect lattice
unit cell results in the extremely high concentration of

105Copyright C© 2008 The Textile Institute TJTI 2008 Vol. 99 No. 2
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Figure 6 Shifted lattice fibre bundle.

Figure 7 Total dimensionless shear force on fibre 1, shifted
lattice model.

Figure 8 Fibre strain profile, shifted lattice model.

strain in the nonoverlapping region, b̄ < ξ < d̄ , as dis-
cussed previously. For a better approximation of actual
fibre strain profiles, we consider a slightly more complex
fibre arrangement, which we denote as the shifted lattice
model, where the ends of abutting fibres occur toward the
tips of a given fibre, and where abutting fibres run in both
directions, that is, toward the tip and toward the fibre mid-
point. This fibre arrangement is depicted in Figure 6. To
keep the mathematical treatment of this geometry simple,
only elastic interactions between the abutting fibres are per-
mitted, as in Equation (1), and the geometry considered is
essentially two dimensional—the layer of fibres depicted
in Figure 6 is one of many identical layers assembled in a
square-packed bundle. For conciseness, the mathematical
development will not be given, as it follows closely that of
the perfect lattice model. As the solution for this geometry
involves 33 integration constants, the system will be solved
numerically.

The total shear force profile along fibre 1 is exhibited
in Figure 7 for the case of fibres with a staple length of

64 in the dimensionless length units. Somewhat longer
staple lengths may be more physically reasonable; how-
ever, numerical problems are encountered due to matrix
ill-conditioning. The total shear force is given in dimen-
sionless form as Q T =

∑
q1,i
ε0

√
m/kEA, where the q1,i are

the shear tractions on fibre 1 arising from the i th abutting
fibre, given by Equation (1), and the shear tractions are
summed over the abutting fibres at particular ξcoordinate
positions. The large negative shear force on the fibre’s left
end and positive shear force on the fibre’s right end act to
extend the fibre and are due to the proximity of the tips
of fibre 1. The smaller shear forces occur due to the tips
of the abutting fibres 4, 5, 2, and 3 in order of increasing
ξ . Right end fibre tips exert negative shears and left end
tips exert positive shears on fibre 1. Since the bundle ge-
ometry features successive right and left end tips abutting
fibre 1, the fibre is subjected to what are essentially self-
equilibrating groups of shear tractions that lead to localized
strain fluctuations. The fibre strain profile is exhibited in
Figure 8. Strain is seen to rapidly recover at the fibre ends
and displays maximum plateaus in the gap areas between
the tips of abutting fibres. Due to the periodicity of the gap
areas in the lattice, these strain maximums are significant,
though not as great is in the perfect lattice model.

Fibre strain profiles in realistic (nonperiodic) fibre bundles

As mentioned above, we expect nearly uniform distribu-
tion, and little coherence, of fibre end position in actual
fibre bundles. Therefore periodic, lattice-type structures
(like those investigated here) will tend to overestimate the
influence of the ends of abutting fibres on the strain pro-
file in a given fibre. In addition, we expect the fibre ends
abutting a given fibre to be nearly evenly divided between
ends that will exert positive shears and ends that will exert
negative shears, similar to the effects seen in the shifted
lattice model discussed above. The combination of uni-
form end distribution and equal likelihood of left and right
ends will tend to smooth out strain fluctuations along the
fibre outside of its own end-affected regions. Calculations
of strain concentrations in bundles of continuous fibres near
isolated breaks give a good indication of the approximate
size of strain fluctuations in realistic staple fibre bundles.
In square-packed bundles of like fibres, strains in a fibre
abutting a break are increased by 14% or less (Rossettos
and Godfrey, 2002). The maximum of 14% applies for no
slip along the abutting interface—the presence of slip will
significantly reduce the strain concentration.

In view of the preceding argument, a relatively flat distri-
bution of strain over the middle portion of the fibre may be
expected. In addition, given the large sizes of the dimen-
sionless length parameters estimated from typical staple
fibre lengths and mechanical properties, we may assume
that generally fibre strain profiles will exhibit straight line
strain recovery from the ends, and for the case of little or no
slip, the strain profile will exhibit nearly step function like
behaviour. These points taken together, therefore, indicate

106TJTI 2008 Vol. 99 No. 2 Copyright C© 2008 The Textile Institute
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A micromechanical model for extension of a tightly packed bundle of aligned short fibres

that the short fibre composite model (Fig. 1) provides an ex-
cellent approximation for fibre stress or strain distribution
in actual fibre bundles.

Fibre motion in macroscopically homogeneous
bundle extension

It appears that the results here suggest each fibre is pulled
away from each of its abutters, in violation of the notion
that, in real bundles, two or more fibres in contact may
move in the same direction. Actually, although there are
interfibre shear forces that indicate mutual pulling away,
abutting fibres are essentially moving together. The mod-
els have been derived to simulate macroscopically homo-
geneous deformation, that is, the nominal strain is uniform
along the length of the bundle. Near fibre tips there is al-
ways relative displacement between fibres and associated
shear forces; however, in physical terms these relative dis-
placements are small, and indeed, where the abutting fibres
are not slipping, relative displacements are much less than
a fibre diameter. As such, to a first approximation, all fi-
bres move together such that the gross total displacement
of each fibre at a given x position in the bundle is nearly
the same. It should be noted that the shear force distri-
butions and fibre strain profiles here, while obtained for
very idealized bundle geometries, arise, nonetheless, from
the solution of a boundary value problem where realistic
assumptions are made regarding interfibre constitutive be-
haviour and boundary conditions. If, in our analysis, we
were to consider macroscopically inhomogeneous exten-
sion of a bundle that is not self-locking, a point is reached
during extension where a completely slipping interface de-
velops between two subsections of the bundle. As remote
extension of the bundle continues, the bundle slips apart
locally leading eventually to rupture. During this localized
deformation, individual fibres move either in the –x or +x
direction (depending on subsection), and except for fibres
lying directly on the slipping interface, each fibre moves
along with it abutters.

Growth of slipping regions with increasing strain

In this section, we use the perfect lattice model to investi-
gate the growth of slipping regions with increasing bundle
strain.

The perfect lattice model is sufficiently simple to solve
symbolically (MATHEMATICA©R was used here). The
parameter Q s is found to be

Q s = 2d̄ {1 + exp(2
√

2ā)}


1 + √
2ā + ā2 − b̄ 2 − 2

√
2d̄−

4ā d̄ + 4b̄ d̄ + exp(2
√

2ā)
(1 − √

2ā + ā2 − b̄ 2 + 2
√

2d̄−
4ā d̄ + 4b̄ d̄ )




(31)

Permissible values of ā are such that 0 ≤ ā ≤ b̄ , encom-
passing the range of initial onset of slip from a nonslipping

state
(
ā → b̄−)

, partial slip
(
0 < ā < b̄

)
, and the onset of

complete slip
(
ā → 0+)

along the fibre-to-fibre interface.
A key value of Q s is that associated with the initiation of
slip, denoted Q IS. Setting ā = b̄ and assuming reasonable
parameter values, a very good approximation for Q IS is ob-
tained by discarding small terms (without the exponential
factor),

Q IS
∼= 2d̄

1 − √
2b̄ + 2

√
2d̄

. (32)

The parameter Q IS is seen to be O (1) for reasonable pa-
rameter values

(
b̄ , d̄ � 1

)
.

The parameter Q s may be interpreted as a nondimen-
sional frictional slip “strength” at the fibre-to-fibre inter-
face. Values of Q s > Q IS pertain to bundles under condi-
tions such that no slip occurs—the interface is too strong.
The definition of Q s includes the constants m , k, EA, and
the quantities q s and ε0. The value of ε0 will, of course,
increase monotonically during the extension process, and
the physical slip frictional force per length, q s, is regarded
as a function of ε0. The function q s(ε0) will depend on fibre
frictional properties and on the lateral pressure exerted on
the fibre bundle.

Consider the special case of q s = constant, as might
represent the behaviour of fibres that have been given a
surface treatment, for example, an adhesive coating. Re-
calling the definition of Q s, we may identify a value of
the nominal bundle strain that corresponds to the onset of
slip, ε0IS = q s/Q IS

√
m/kEA. An increased coordination

number, m , will lead to a reduction in ε0IS, whereas in-
creased k and EA lead to increases in the nominal strain at
onset of slip. Using ε0 = q s

Q s

√
m/kEA, it can be seen that

ε0/ε0 = Q IS/Q s. From the latter relationship, along with
Equations (30) and (32), the growth of the slipping region
with increasing strain can be determined.

The above approach can be extended to more general
behaviour for q s(ε0) by adopting a power law form, q s =
cε1−n

0 , similar to the expression introduced by Rossettos
and Godfrey (2002). Here, c is a constant with dimensions
of force/length, and n takes on fractional values in the range
of 0–1. Through the use of this simple empirical formula,
we may explore trends in the behaviour of bundles of fibres
embedded in staple yarns. The exponent n models the non-
Amontons’ law behaviour of fibre-to-fibre friction and the
increase in lateral stresses in the bundle due to extension. As
mentioned earlier, modeling of fibre bundles embedded in
twisted yarns is complex; here, we have assumed a uniform
lateral stress on the fibre bundle in lieu of the varying lateral
stresses occurring in actual yarns due to fibre migration.
By making the appropriate substitutions of the power law
form in the expressions for Q IS and Q s, it is easy to show
that the strain ratio can be written as

ε0

ε0IS
=

(
Q IS

Q s

)1/n

. (33)
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T. A. Godfrey

Figure 9 Growth of slip extent, b̄ − ā , with increasing
strainε0, d̄ = 50, b̄ = 40, and various values of n.

The special case of constant q s is recovered by setting
n = 1 in Equation (33). Returning to the definition,
Q s = q s

ε0

√
m/kEA, a value of n = 0 results in Q s becoming

independent of strain, suggesting that under such condi-
tions, the extent of the slip region does not grow with
increasing strain.

The growth of slip extent with increasing strainε0 is ex-
hibited in Figure 9 for the case d̄ = 50, b̄ = 40, and various
values of n. For this comparison, the c values have been
chosen such that q s is the same in each case at ε0 = 0.02,
and the remaining physical constants are assigned values
such that, for n = 1, ε0IS = 0.001. For smaller values of n,
slip extent is seen to increase rapidly at small strains, but
level off and increase slowly at moderate strains. There-
fore, small n values promote self-locking behaviour of the
fibre bundle within the yarn. For a linear relationship be-
tween yarn lateral pressure and axial extension, and typical
fibre power-law friction behaviour (Morton and Hearle,
1975, p. 619), n values of about 0.1–0.3 may be expected
(note that the friction index n defined in the reference is a
different parameter).

Bundle tension and tangent stiffness

In this section, we use the perfect lattice model to investi-
gate bundle tension and the tangent stiffness of bundles.

The average fibre tension is obtained from the load-
displacement relation, Equation (2), evaluated at the origin,

p = ε0EA
dui

dξ

∣∣∣∣
ξ=0

, i = 1 or 2. (34)

The average fibre tension with increasing slip extent is
exhibited in Figure 10 for the case d̄ = 50 and b̄ = 40.
The tension p is normalized by the fibre tension in a bun-
dle of continuous (but otherwise identical) fibres under the
same nominal strain. In this case, average tension relative
to the continuous fibre bundle, p/EAε0, is seen to decrease
from 0.82 at initial slip to 0.63 at full slip along the inter-
face. Larger values of the dimensionless length parameters
result in similar trajectories as full slip is approached. Nor-
malized average tension at the full slip limit is particularly
insensitive to parameter values, for example, the case d̄ =
150 and b̄ = 120 also results in a value of p/EAε0 = 0.63;

Figure 10 Normalized average tension in bundle with
increasing slip extent, d̄ = 50 and b̄ = 40.

Figure 11 Tangent stiffness of bundle with increasing strain,
d̄ = 50 and b̄ = 40.

increasing the value of b̄ such that d̄ = b̄ = 150, results
in p/EAε0 = 0.67. At initial slip, values of normalized
average tension approaching one are found for cases with
d̄ = b̄ .

A measure of the tangent stiffness of the bundle may
be defined as the derivative of the average fibre tension
with respect to the nominal strain, dp/dε0. Regarding the
evaluated derivative in Equation (34) as a function, f (γ ),
where γ ≡ ε0/ε0IS, we may write dp/dε0 as,

dp
dε0

= EA
(

f (γ ) + γ
df
dγ

)
. (35)

The behaviour of the tangent stiffness with increasing
strain is exhibited in Figure 11 for the cases n = 1 and
n = 0.8, with d̄ = 50, b̄ = 40. Starting at roughly 0.8EA,
tangent stiffness is seen to decrease moderately with in-
creasing strain to about 0.5EA, at which point the stiffness
suddenly drops to nearly 0. The sudden loss of stiffness
corresponds to a state of full slip being attained along the
fibre–fibre interface. Larger values of the dimensionless
length parameters (not shown) stretch the curves out along
the ε0/ε0IS axis.

SUMMARY

In this work, detailed micromechanical models of idealized
fibre bundles have been used to investigate fibre strain pro-
files, slippage behaviour with increasing extension, bundle
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A micromechanical model for extension of a tightly packed bundle of aligned short fibres

load-extension, and tangent stiffness properties. The mod-
eling approach permits abutting fibres to interact by elastic
surface shear forces arising from fibre shearing deforma-
tions in gripping regions and inelastic frictional slip in slip-
ping regions, where transition from gripping to slipping at
a contact position occurs as a linear elastic–perfectly plas-
tic function of the interfibre relative displacement. Results
show that for typical staple fibre dimensions and physi-
cal properties, a short fibre composite model for the fi-
bre strain profile, a constant strain central plateau with
straight line strain recovery regions at each end, provides
a good approximation to the average fibre strain profile oc-
curring along fibres embedded in bundles. Trends in the
self-locking behaviour of fibre bundles in twisted yarns,
involving interfibre frictional constitutive behaviour, have
been illustrated. For one fibre assembly considered, results
for bundle tangent stiffness indicate that, with increasing
extension, average bundle stiffness may be expected to de-
crease from about 0.8 to 0.5 relative to a bundle of similar
but continuous fibres, with 0.5 being reached at the point
of collapse by localized slippage.
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