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DETECTABILITY THEORY AND THE INTERPRETATION OF
VIGILANCE DATA
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Defence Research Medical Laboratories, Toronto, Ontario, Canadg 1.2

ABSTRACT

The concept of subjective probability forms the basis of a brief summary of
the theory of discrimination. The concept of likelihood ratio is considered as
an inferpretive convenience, rather tham as a conceptual necessity, and is used
to introduce the familiar ROC curve. Interpretation of vigilance data is discussed
in terms of the expected form of the relevant ROC curves. For the detection
of signals in a steady background, the typical paradigm of a vigilance experi-
ment, the ROC curve may be severely skewed, When the data depend on a
single operating point, the tabulated indices of detectability, ', and of caution,
A, may give misleading impressions of actual detection behavior. The tabulated
value of § will always be higher than the true §, usually drastically so, while
the tabulated value of d' will usually, but not always, be higher than the true
value of o'. The tabulated values will show correlation, which may be either
positive or negative, across-observers in situations where the true values of 4
and § would show no correlation. Though the tabulated measures may be of
dubious value, the concepis. of defection theory remain useful in the analysis of
vigilance. '

1. INTRODUCTION

There is disagreement about how many detection theory parameters may
be usefully applied to vigilance data. BROADBENT and GREGORY (1963, 1965)
used both &, the index of detectability, and 8, the index of caution. Their
later paper defended the use of both indices. MackworTH and TAYLOR
(1963) used &, but declined to use f on the grounds that it seemed more
sensitive to the inmevitable violations of detection theory assumptions.
WIENER et al. (1964) used neither, feeling (WIENER, E.L. personal communi-
cation, 1964) that the assumptions were sufficiently badly violated, and the
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data sufficiently disturbing in detail, that neither index could be used. This
paper attempts a partial resolution of the problems arising from use of
detectability theory in the context of vigilance.

2. DISCRIMINATION AND SUBJECTIVE PROBABILITY

Consider first: the basic paradigm of detection and discrimination experi-
ments. Two sorts of events are possible. Call them oranges and lemons.
During an observation interval, either an orange or a lemon is presented.
The observer does not know exactly which, since he only sees a distorted
or noisy version of the event, but he must label a particular event as either
an orange or a lemon,

The observer goes through some unspecified processes, winding up at
some stage with an estimate of the probability that he observed an orange.
This subjective probability is based partly on the a priori probability that the
event would be an orange, and partly on the evidence provided by the
observation. The evidence provided is different for each observation so that
the probability arrived at by the observer is different each time an orange is
actually presented. In principle, one can describe two separate subjective
probability distributions, one for the cases in which an orange was presented,
and another for the cases in which a lemon was presented.

How the observer responds once he has assessed the probability that an
observed event was an orange depends on circumstances irrelevant to the
actual discrimination process. If it is very important for the observer not to
call any oranges lemons, then he should say ‘orange’ whenever he has the
least suspicion that it might have been an orange. On the other hand, if it is
equally important to be correct in either direction, then he should say
‘orange’ only if he thinks he has at least 2 50~30 chance of being correct.
For the same information gained from an observation, some situations will
call for the responmse ‘orange’, others for Temor’. The cheice belongs to
the observer.

Assume the observer at least to order observations, so that if one observa-
tion leads him to respond ‘orange’ then another obsérvation which yields a
higher subjective probability in favour of orange will ‘evoke the- same
response. This implies a fixed criterial subjective probability. Whenever the
assessed probability of orange is greater than this criterion, then the subject
should say ‘orange’, Otherwise, he should say ‘lemon’.

An observer can base his response only on his own assessment of the
probability that the event was an orange. The experimenter is not able
directly to measure this assessment by the observer. Besides, experimenters
are often more interested in what information the observation gives the
observer than in the final assessment. For both these reasons, conventional
usage in detectability theory abandons subjective probability in favour of a
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more ‘objective’ measure, which is closely related to the value of the
observation . as evidence.

3. LIKELIHOOD RATIOS

It is convenient and elegant to consider the two event classes, oranges and
lemons, together and symmetrically. The analyses use the ratio between the
probability of oranges and the probability of lemons. Before the observation,
this is the prior probability. ratio; afterwards, it becomes the posterior
probability ratio. One frequently invoked corroliary of Bayes’ theorem (see,

‘¢.8., EDWARDS, LINDEMANN and Savacr, 1963) is that posterior probability

ratio is equal to prior probability ratio times a quantity known as the likeli-
hood ratio. _

The likelihood ratio is defined as the ratio between the probability of the
observation given that the first alternative (orange) is true, and the probability
of the observation given that the second alternative (lemon) is true. In
theoretical analyses of decision behaviour, the likelihood ratio is normally
obtained in the manner sugpested by its definition, but in experiments, it is
usually obtained indirectly from the relation of the prior and posterior
probability ratios. In either case, the likelihood ratio provides a measure of
the evidence given by an observation.

As long as the prior probability ratio is constant, the likelihood ratio
distributions both reproduce the subjective posterior probability ratio distri-
butions, with the abscissa divided by the prior probability ratio. Hence when
the observer decides on a subjective probability ratio criterion, he is also
selecting a likelihood ratio criterion.

The probability that the observer says ‘orange’ given that the event was
an orange is determined by the proportion of the orange-contingent likeli-
hood-ratio probability-density function above the criterion, while the
probability that he says ‘orange” when the event was a lemon is similarly
determined by the proportion of the lemon-contingent function above the
criterion. These represent all the observations from which the observer got
more than enough evidence of orangeness to decide on ‘orange’ as his
response. To determine exactly how much evidence the observer needs, it is
necessary to determine the relative probabilities of obtaining exactly the
criterion likelihood ratio when orange is true and when lemon is true. The
criterion likelihood ratio, in other words, is the ratio between the heights of

ihe two density functions at criterion. -

The data do not give these heights; they give the integrated density above
criterion. To determine the heights of the density functions, one must
differentiate, which, in concept, implies the performance of two experiments
identical except that the criteria differ infinitesimally. The integral of the
orange density function and the integral of the lemon density function are
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both functions of the criterion placement. Since the ratio of the derivatives
of two functions of the same variable with respect to that variable is equal
to the derivative of one function with respect to the other—-

{dY/dX)/(dZ/dX) = dY/dZ

__one can eliminate direct reference to the criterion placement, which is
not given by data. The criterion Iikelihood ratio is the derivative of the
probability of an:‘orange’ response to an orange event, with respect to the
probability of an ‘orange’ response to a lemon event.

The determination of the likelihood ratio as the derivative of a functional
relationship between two experimentally determined probabilities suggests
that the function relating them is itself interesting. The entire function is
described by permitiing the criterion likelihood ratio to range from zero to
infinity. When the criterion likelihood ratio is zero, each distribution lies
entirely above it, so that both the probabilty of an ‘orange’ response to an
orange event and the probability of an ‘orange’ Tesponse to a lemon event
are unity. Similarly, when the criterion is infinity, both probabilities are zero.
The function, known as the ROC curve, traces some sort of curve within the
unit square, starting at (0,0) and ending .at (1,1).

4. PropPERTIES OF ROC CURVES

In any particular experiment when the observer is using a stable criterion,
the two conditional probabilities define a point in the ROC space. This point
is known as the operating point, and through it passes an experimentally
undefined ROC curve that would be traced out, if the observer varied his
criterion. The stope of the ROC curve where it passes through the operating
point is the fikelibood ratio at criterion. It is an index of how cautious the
ohserver is in accepting the event to be an orange. In standard detection
theory usage, this index is called f; § can range from zero to infinity, being
zero if the observer rejects as oranges only those events he is correctly
certain are lemons, and infinity if he dccepts as oranges only those events
he is correctly certain are oranges.

The shape of the ROC curve depends on the structure of the two classes
to be discriminated, and on the statistics of the noise which obscures the
discrimination. If an orange event is frequently easy to identify correctly,
the ROC curve will start from (0,0) with a long reach of high slope, while
if the lemon event is often easily recognized, the ROC will reach (1,1} at the
end of a stretch of fow slope.

If ROC curves can have various shapes, it is apparent that one may cross
another. It is then meaningful to talk as if discriminability had a unique
measure? A theorem due to GREEN (1964) shows that it is. Green’s theorem
proves that for any yes—no ROC curve whatever, the area under the curve is




394 M. M. TAYLOR

equal to the maximum probability of a correct response in the coneeptually
matched two-alternative-forced-choice (2AFC) experiment. In the 2AFC
experiment, the observer has to choose which of two observations, one
being an orange, the other a lemnon, was the orange. The probability of being
correct in such an experiment seems intuitively a measurecof-discriminability,
implying that discriminability is measured by any monotonic function of the
area under the ROC curve.

The standard measure of discriminability, 4', is not overtly related to the
area under the ROC curve, yet has proved extremely useful, It derives from
a specific type of discrimination, in which each likelihood ratio distribution
is a monotonic transform of a Gaussian distribution, and the Gaussian
distributions have equal variance. Using as unit measurement the common
standard deviation of the underlying Gaussian distributions, &’ is the separa-
tion of their means. _

Symmetrical Gaussian ROC curves are completely specified by the
associated value of d’. This means that their areas are known once d’ is
known; o’ is therefore a monotonic transform of the area under the sym-
metrical Gaussian ROC curve, and a valid index of its discriminability.
4’ may be used as an index of discriminability for asymmetric ROC curves
by equating the area of the asymmetric curve with that of a symmetric
Gaussian curve. The d' of the symmetric curve then is an index of dis-
criminability valid for the asymmetric curve,

5. ROC CURVES IN VIGILANCE

Oranges and lemons have been convenient labels for the two classes of
gvents to be discriminated. The classes have been treated symmetrically.
Why should an orange have preferential treatment over a lemon, or vice-
versa? The situation changes when it comes to detecting a signal irt a noisy
background. The mathematical -analysis is still symmetrical, but one does
not think of the non-signal event in the same way as one thinks of the
signal. The tendency is to make & non-symmetric analysis. The classical
methods of psychophysics, in which subjects were chastized for false reports
of signals, but not for false reports of non-signals, strikingly illustrates this
asymmetry. '

A signal normally is thought of as something added to the non-signal,
The subject normally knows guite well what the non-signal would be, were it
not obscured by noise. He does not know so well, however, what the signal
would be without the noise. There is an essential asymmetry between the
signal event class and the non-signal event class, that usually the subjects
knows less about what is a valid example of the signal class than he does
about what constitutes a non-signal. When this asymmetry does not oceur,
one asually finds that the tendency to analyse one class as signal and the
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other as non-signal also fails to occur, and the experiment is thought of as
discrimination experiment rather than a detection experiment.

To see the effect of the asymmetry between the knowledge of the signal
class and knowledge of the non-signal class, consider- the detection of a
1000 Hz tone. Suppose that the subject is very precise in what he knows,
$0 that the only uncertainty he is faced with is whether the tone, which he
knows always to start from zero phase, initially goes positive or negative.
This sign uncertainty is quite enough to demonstrate the main effects of
asymmetry. The only noise which should affect the discrimination is noise
which is like a 1000 Hz tone starting at zero phase, and initially going either
positive or negative. Suppose -the signal always starts by going positive,
though the observer does not know that. There are four possible cases:

(1) The event is non-signal, and the noise starts positively.

(2) The event is non-signal and the noise starts negatively. In both these
cases, the effect is to make the observation seem more like a signal.

(3) The event is a signal (starting positively) and the noise starts nega-
tively. In this case, the observation is more like a non-signal.

(4) The event is a signal and the noise starts positively. NMow the
observation is less like a signal, but even less is it like a non-signal.
It scems like an amplification of the signal, and will unfailingly be
properly identified. ' '

Of the four cases, none leads to easy and correct identification of the
non-signal case, but one gives an easy identification of the signal. In terms
of the ROC curve, easy identification of the signal leads to an initial portion
of fairly steep slope, but with no easy identifications of the non-signal there
will be no final portion of very shallow slope. The ROC curve is asymimetri-
cal, or skewed. :

The same analysis may be made, at least conceptually, for any detection
situation. Always, if the subject knows less about what is a signal than
about what is a non-signal, the ROC will be skewed in the same way. The
curve will cling to the left edge of the ROC space longer than it does to the
top. The less the observer knows about the exact.characteristics of the
signal, as compared to the non-signal, the more skewed will the curve be.
Particularly in vigilance experiments, the asymmetry and skew will be
marked, since the subject has much more opportunity to renew his
acquaintance with the non-signal than he does with the signal,

Specific cxamples for an ideal observer of the skew due to uncertainty of
signal specification are displayed in figs. 1 and 2. The symmetric ROC of
fig. 1 represents possible detection behaviour for a signal of normalized
energy 1.82 units in Gaussian noise of 1 unit power per. unit bandwidth
{cf. Swers et al,, 1961}, The skewed ROC curve represents a signal of the
same type in the same noise, but now the observer does not know in which
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Fig. 1. ROC curves for a simple signal in Gaussian noise. The symmetrical
curve is for the case where the observer knows the signal exactly, while the
skewed curve represents the case in which he knows the signal exactly except
that he does not know.in which of 1000 intervals it may appear. The skewed
curve is calculated for a signal with nearly nine times the energy required for
the unskewed curve. _ :

of 1000 different places the signal occurred. The energy required to obtain
the same detectability is about 16 units with this much orthogonal specifica-
tion uncertainty. While fig. 1 demonstrates the skew of the ROC curve and
depression of detectability associated with orthogonal specification uncer-
tainty, it also demonstrates that a lot of uncertainty is needed to produce a
sttong effect. However, if the uncertainty is not orthogonal, much less
uncertainty may give quite dramatic effects. In the left panel of fig. 2, ROC
curves are displayed for signals of two strengths. The uncertainty is in the
sign of the signal and to some extent in its amplitude, which may be either
1/2 or 3/2 the nominal amplitude. Symmetric curves of the same detec-
tability are displayed in the right panel for comparison. In spite of the fact
that the uncertainty is limited to four possibilities for the signal instead of
1000, the skew in fig. 2 is more marked than in fig. 1. The important factor
in determining the skew in an ROC curve is not the amount of uncertainty
but its form. . ‘

6. SkEwWED ROC CURVE AND THE INTERPRETATION OF DATA

There is one point in ROC space where a skewed ROC curve crosses its
matched symmetrical Gaussian curve (see fig. 1). Tabulated values of '
assume that the ROC through the operating point is symmetrical Gaussian,
so if the operating point it where the actual ROC crosses its matched
Gaussian ROC, the tabulated value of &’ will be correct. More commonly,
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Fig. 2. ROC curves for a simple signal in Gaussian noise. The skewed curves
represent signals for which the observer knows the signal exactly except for its
sign and whether its amplitede is 1/2 or 3/2 the nominal amplitude. The two
curves are for signals of different energy levels. The symmetrical curves are
matched in“area with the skewed curves. Isocriterion curves — lines connecting
points where the ROC curves of a family have the same slope — are drawn for
beta egualling one and two for both families, to iflustrate the proposition
that skewed ROC curves have at any point a lower slope than the symmetric

Gaussian curve fhrough the same point. .

the operating point will be to the left of the cross-over, in which case, the
tabulated value will belong to a symmetric Gaussian curve of too high
detectability. In a vigilance experiment, this will be particularly true, both

because the skew of the true ROC will be considerable, and because the-

disproportionate probability of a non-signal event demands that considerable
evidence point to there having been a signal before the observer actually
accepts the fact. The operating point in a vigilance experiment must there-
fore be in a region where the true ROC curve has quite high slope.

If the experimental conditicns vary only the detectability of the signal,
without influencing the criterion or the specification nncerfainty, then
perhaps tabulated values of 4" may properly describe the results of the
experiment. They will all be too high, but the absolute level of detectability
is rarely very interesting in a vigilance context. Tf the experimental variations
affect the criterion, then the tabulated values of & will change, even though
the true detectability of the signal may not.

Tabulated values of both indices presume . that the ROC is symmetric
Gaussian. At any particular point, the skewed ROC is always less steep than
a Gaussian curve that crosses it at that point, so that tabulated values of i}
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are always too high. For the curves of fig. 2, tabulated values mostly ran too
high by a factor of between two and three in the region usually of interest.
More realistically skewed ROC curves may give tabulated values in error
by larger factors. This point may lie at the root of the dilemma encountered
by JeErisoN et al. (1965) who found psychologically unrealistically high
values of 8 in a vigilance experiment, and developed an ingenuous theory of
mized modes of response to account for them.

Skewed ROC curves change slope very fast near the left edge of the
ROC space, and slowly near the right. When the appropriate operating point
is in a region of steep slope, reasonably large variations in § cause small
shifts of operating point in the ROC space. With slightly less caution
demanded, reduction in § can mean significant rightward shifts along the
ROC curve, while an equivalent increase in § means very little leftward
movement. Observers differ, not only in §, but also in detection efficiency.
If the operating point is in a region of not too high slope, it is quite con-
ceivable that a slightly incautious or ‘trigger-happy’ poor detector might
give a great number of false alarms, yet get fewer correct reports of signals
than does a cantious good detector who gives almost no false alarms, It was
largely this effect that dissuaded WieNER (personal communication, 1964)
from using detection measures in his studies. He found very little correlation
across observers between detection probability and false alarm rate, and
concluded that the assumptions of detection theory were violated.

When the operating point is further from the ‘knee’ of the skewed ROC
curve, trigger-happy observers should be less of a problem. Variations in
detection ability, however, should then place the operating points for dif-
ferent observers along an isocriterion curve—the locus of points having the
same criterion on different ROC curves of a single family. An isocriterion
curve for skewed ROC curves does not follow an isocriterion curve for
symmetrical ROC curves, as the examples in fig. 2 demonstrate. Hence,
alterations in detectability without real changes in criterion will show up in
the tabulated values as correlated changes in detectability and criterion. The
same applies to changes in criterion without real changes in detectability.
The expectation of spurious correlations, sometimes negative and sometimes
positive, between values of 4 and § taken from tables, suggests that one
should avoid making any inference about behaviour from such correlations
unless the obtained corfrelations can be shown not to be due to skew in the
ROC curves. In particular, results from single operating points cannot be
construed as giving evidence that good detectors tend to be either cautious
or incautious,

7. SUMMARY
Consideration of the mechanics of detection from the point of view of
subjective probability clarifies the usefulness of the ROC, even though the
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ROC does not overtly involve subjective probability, In vigilance experi-
ments, the ROC may be expected to show more or less severe skew, which
affects the interpretation of the various indices of detection behaviour. The
detection index, &, may give meaningful, though usually high values, and
should be interpreted with care. The index of caution, §, will almost always
be too high as read from tables, sometimes drastically so, and interpretations
of f# values must be regarded as dubious. Spurious correlations of g and &'
are to be expected from the tabulated values, and without consideration of
the ROC curve itself, no such correlation should be taken seriously.

The fact that these cantions are derived from consideration of the bases
of detectability theory demonstrates that detection theory remains a potent
instrument in the study of vigilance. A too restricted view of detection
theory may lead to problems, but considerations of the data in generalized
terms of detection theory is most likely to be helpful in understanding
substantive problems.
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