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- ECONOMIC APPLICATIONS OF SWEETNESS SCALES

INTRODUCTION

THE PRESENT STUDY concerns the
economics of sweetness mixtures, in
which pairs of sweeteners are used in
conjunction in order to
overall sweetness of a product. The differ-
ent costs of materials such as sucrose,
glucose (dextrose), saccharin .and. cycla-
mate provide possibilities for.considering
mixtures in terms of a model that.mini-
mizes overall cost while ..maintaining
sweetness, or maximizing sweetness whde
maintaining cost.

The tastes of sweetener mixtur ”s have
been studied by food  scientists and
psychologists for the past.five decades
Early work by the sugar industry.focused
on the possibility that inverting sugar
(sucrose) to a mixture. of glucose and
fructose would enhance sweetness, and
thus enzymatic changes: of sucrose could
provide greater sweetness-at:the same cost
(Sale and Skinner, :1922).+At-about the
same time in Germany a:number of
studies on the taste of mixtures of the
artificial sweeteners, saccharin and dulcin
(Paul, 1922) were underway as a result of
a shortness of sucrose. The resuits of
these experiments indicated that -mixtures
were significantly sweeter than their com-
ponents alone.

The method for determining how
sweetnesses ‘add’ together in a mixture
has been elucidated by Cameron (1943;
1944; 1945; 1947). Cameron asked his
subjects to taste two solutions of differ-
ent sugars and then to select the concen-
tration of sucrose that matched the
sweetness of each sample (sucrose equiva-
lent). He subsequently mixed together
the sugars and repeated the experiment.
The results were expressed as three ‘su-
crose equivalents,” two for the unmixed
components and one for the mixture.
Additivity of sweetness occurred when
the ‘equivalent’ for the mixture equalled
the arithmetic sum of the unmixed
‘equivalents.” In a large series of experi-
ments Cameron demonstrated that addi-
tivity occurred for pairs of sugars, but
only when glucose, maltose or lactose was

used as the reference sugar.. Expressing

sweetness in sucrose or fructose equiva-
lents did not result in additivity of
sweetness.
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These early studies by Paul and Camer-
on lacked a true measure of subjéctive
sweetness, and relied on the concentra-
tion of glucose or sucrose. as the. implicit
sweetness unit. Recent work by.Stevens
(1953; 1960; 1969) demonstrated - that
subjects may be directed to give numeri-
cal judgments in proportion to subjective
magnitude, taste intensity included; and
that these numerical “estimates," called
‘magnitude estimatés,’ prov1d d meaning-
ful ratio measures of taste mtensny. For
example a sweetness judgment of 20
‘means twice the sweetness of a Judgment
0110, and eight times the sweetness of a
]udgment of 2.5 Moskowitz (1970a;
1970b 197‘ a) reported a series"of sweet-
os * for“several “dozen - different
several “artificial sweeteners.
he experimental téchnique are
provided by Moskowitz (1970a).

A convenient and systematic outcome
6f these direct “scaling studies was the
fmdmg that the fiumerical judgments of
sweetness could be related to molar or
percentage concentration by the simple
power function S = kI. That is, S repre-
sents the sweetness judgment and I repre-
sents molarity. The exponent n and the
intercept k may be obtained from the
straight line that results when the power
function is plotted in log-log coordinates,
to yield the equation 1log
S=nlog [ +logk. The slope of the line
provides the exponent, and the intercept
provides the value for log k.

The exponent n is the critical para-
meter for the sweetness equation because
it governs the rate at which sweetness
increases with concentration. It appears
to exceed 1.0 for sugars (Stevens, 1969;
Moskowitz, 1970a; 1970b; 1971a), but is
less than 1.0 for saccharin and cyclamate.
When n. exceeds 1.0 sensory magnitude
accelerates or grows more rapidly than
molar concentration, whereas for n less
than 1.0 the opposite occurs and sensory
magnitude grows less rapidly. Very low
values of n would indicate that large
increments of concentration scarcely pro-
duce any changes in perceived sweetness.
The intercept, or multiplier, k, depends
upon the size of numbers selected by the
subject and upon the measure of concen-
tration selected. However, when several
sugars are rated for sweetness in the same
session and their exponents n are made
equal either experimentally or by subse-
%;lent statistical analysis, then k reflects

e ratio of sweetness among different

sweeteners (Moskowitz, 1970a). This is
because k reflects the relative distance in
logarithmic values (i.e., ratio) of two
parallel lines.

Recent work in sweetness has attempt-
ed to combine power functions of sweet-
ness in order to predict mixture sweet-
ness, Papers by Stone and Oliver (1969),
Stone et al. (1969) and Yamaguchi et al.
(1970) have tried various combinations of
sweetness. functions. Usually, however,
someé multiplicative constant is needed to
account for the often-observed result that
there is ‘synergism,’ so that the sweetness
of the mixture exceeds the predicted
sweetness.

Because of the synergistic effect in
mixtures, a combination of power func-
tions and an associated multiplier to
handle the effect is shown below:

Sweetness S, =k, C'h; Sweetness S, = k, Cp
Mixture sweetness S, , =k, (k, Ca+k, Cp)

Empirical studies of mixtures (Stone and
Oliver, 1969; Stone et al., 1969; Mos-
kowitz, 1971b) suggest that the values of
k3 for synergistic mixtures are moder-
ately greater than 1.0, e.g., about
1.4—1.8, so that the actual prediction
made by summing simple power func-
tions is an underestimate. For conven-
ience in simulation we may assume that
k3 remains unchanged across most of the
sweetness range and may be viewed sim-
ply as a ‘change-of-scale.” The form of
sweetness summation is unaffected if ky
is permitted to vary to correct the under-
or overpredictions.

EXPERIMENTAL

Procedure

In three experiments glucose was evaluated
for sweetness in conjunction with fructose,
sodium cyclamate and sodium saccharin. In
each experiment subjects received seven solu-
tions of glucose, seven solutions of the second
sweetener, and 34 mixtures of the two sweeten-
ers in varying ratios and dilutions. Samples were
served to the subjects in small, % oz paper cups
and maintained at the room temperature
(22°C). The solutions were made up three days
prior to the experiment and stored. under
refrigeration, to permit both mutarotation to
an equilibrium mixture of isomers and to
prevent mold growth. S’s were instructed to
judge only the sweetness of the solutions, and
for the simple unmixed sweeteners power func-
tions of the form S =kI" were fitted to the
median judgments of 24 §’s. Because of experi-
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mental variation the exponents and intercepts
of the glucose function varied across experi-
ments (as shown later by the ‘generating func-
tions’ in the figures), although in each instance
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Fig. 1—A hypothetical iso-cost function in
which X and Y are two sweeteners, each having
unit cost. Total cost = $7. Sweetness is assumed
to be equal to the square of molar concentra-
tion (total sweetness = X* + Y? ). All points on
the solid line satisfy the equation X + Y = 7. All
points on the dashed curve satisfy the function
FIX Y)=X*+Y?, or GIX)=X* + (7—Y)*. To
obtain a value for Y for any X, use the solid
line. The total ‘sweetness’ is given by the value
of the right-hand ordinate, labelled X* + Y?.
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the glucose exponent was higher than 1.0
(about 1.3-1.6). Power functions also de-
scribed the sweetness of fructose. Power func-
tions were forced to fit the saccharin and
cyclamate functions, even though they demon-
strated significant nonlinearity in log-log coor-
dinates. A revision of the simple summation
model may be made to account for quadratic
and cubic terms in the saccharin and cyclamate
functions. For ease of computation, however,
only their linear portions (i.e., simple power
functions) were used.

For each sweetener the cost of the mixture
was ascertained from the prices of the ingredi-
ents. The cost per mole was obtained from the
1971 catalog of the Sigma Chemical Co. and
reflects the cost of reagent-grade material. For
each mixture of two ingredients, therefore,
there are two associated values: a total cost
obtained from a simple linear sum of independ-
ent costs and a total sweetness based upon the
addition of two power functions.

Other pairs of sweeteners were also investi-
gated, but only by computer simulation. For
these ‘hypothetical’ mixtures the individual
power functions relating sweetness to concen-
tration were obtained from Moskowitz
(1971b). For both the empirical and the hypo-
thetical mixtures the value of k;, which ac-
counts for synergistic effects was arbitrarily set
at 1.0 to facilitate computation and to permit
comparison of the various mixtures with each
other.

Types of simulation
Two theoretical problems were considered:
maximization of sweetness subject to maintain-

ing a fixed cost and minimization of total cost
subject to maintaining constant sweetness. Ini-
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tial approaches were to solve analytically these
problems with the help of Lagrange multipliers
(Taylor, 1955) and with the appropriate cost
and sweetness functions. In all cases where the
exponents were not small whole numbers the
analytic solution did not work, and thus a
computer simulation was needed.
In the computer simulation the overall cost
of the mixture was first fixed, and a large
number of pairs of concentrations were then
computed that satisfied the cost constraint. A
smooth curve was drawn showing the relative
amounts of the two sweeteners whose overall
cost was the desired amount. For each pair the
sweetness was then calculated. Then a curve
was drawn showing the sweetness of the mix-
ture at the different levels of sweeteners for the
fixed total cost. With this method several
different overall costs were scanned in order to
produce different cost functions (iso-costs), and
their corresponding contours were computed.
In the second part of the simulation the overall
sweetness was fixed and a large number of pairs
of concentrations were determined by solving
the sweetness equation. The total cost of each
mixture was then calculated. Again, several
different levels of total sweetness were scanned
in order to determine the sweetness contours,
and the costs of these mixtures were subse-
quently calculated.

RESULTS

FIGURE 1 illustrates a straight line (to-
tal-cost contour) for a hypothetical pair
of sweeteners X and Y. The ‘cost’ of 1
mole of X and of Y is 1 unit respectively
for each. For each value of X there is
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Fig. 2—Mixtures between glucose and fructose, Na cyclamate and Na saccharin. The generating equations are shown below each pair of graphs.
Numbers on the top figure in each pair indicate the overall, fixed sweetness level, whereas those in the lower portion indicate overall, fixed cost. All
pairs in this figure were investigated in actual experiments, although the curves are idealized versions of the empirical mixture data. Cost is given in $

per mole weight of the mixture. ’
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only one value of Y that satisfies the cost
constraint X + Y = 7. Only positive values
of X and Y. are shown, since negative
values indicate that a concentration must
be subtracted from the mixture. Sweet-
ness is assumed in this example to be
represented by the square of molar con-
centration (so that a 4:1 increase in
molarity would lead to an increase of
16:1 in sweetness). In addition, the
sweetnesses of the components X and Y
are assumed to add algebraically. Thus,
the curve represented by X2 + Y2 repre-

sents the overall sweetness of the mix-

ture, and its numerical value may be
obtained from the vertical axis at the
right of Figure 1.

For any value of X, the corresponding
value of Y can be found that satisfies the
constraint, and the overall sweetness of
the mixture can be calculated. In fact,
both variables, Y and (X? +Y?), are
uniquely determined for any value of X.
The sweetness curve may thus be consid-
ered either as a function of both X and Y
(i.e., X? + Y?) or as a function of X alone
[ie.,, X* +(7—-X)*]. This unique deter-
mination of the sweetness function arises
from the cost constraint, which makes Y
directly depend upon X. A similar figure
may be constructed for the dual problem,
of computing overall cost when sweetness
is maintained at a constant value (e.g.,
X% +Y? =10). Total cost in the dual
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Fig. 3I=Mixtures of glucose, sucrose, fructose and s
~ kk?d’fere obtained from Moskowitz (1971a).

problem would be given by the equation
X+ (10-X?)5. ,

Figure 2 shows the mixture functions
obtained from three empirical studies.
Below each part of the figure are the
sensory functions that were used to gen-
erate sweetness values, as well as the cost
functions used to compute the cost per
mole of hybrid mixture. The overall
sweetness of the mixtures was fixed at
five different values: 40, 80, 120, 160
and 200. In the present system the
sweetening power of 0.5M glucose 9%)
has been assigned a sweetness value of 10.
Because of experimental variations, the
sweetness functions for glucose, as shown
in the bottom equations of Figure 2,
differ slightly among themselves so that
the exponent varies between 1.3 and 1.6,

For each of the three mixture-sets in
Figure 2, the horizontal axis represents
the molarity of glucose. The computer
analysis scanned a large number of con-
centrations between 0.0 and 3.0 moles.
The corresponding molarity of the second
sweetener satisfying either the cost or the
sweetness constraint is shown at the left
hand side of the vertical axis.

In order to use the figures, one must
first locate the contour that is of interest.
For example, consider the mixture whose
overall sweetness is 40. A large number of
glucose concentrations satisfy this re-
quirement, and for each concentration a
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ness), the mixtures again show different
behaviors. For fixed total cost, glucose-
fructose mixtures become sweeter with
increasing amounts of glucose, a_ result
that is due to the smaller cost of glucose.
That lower cost of glucose is sufficient to
outweigh the greater sweetening power of
fructose. On the other hand, mixtures of
glucose with cyclamate or saccharin be-
come less sweet (for fixed cost) as glucose
predominates in the mixture. This latter
result is obtained because a great deal of
sweetness can be obtained for relatively
small amounts of the artificial sweetener.

Figure 3 presents the results of com-
puter simulation of mixtures between
glucose, sucrose, fructose and sorbitol.
These four sugars are commonly used by
the food industry to provide sweetness
and represent a relatively moderate varia-
tion of costs and relative sweetness.

The sweet functions were obtained
from estimates provided by Moskowitz
(1971a). Sucrose and fructose are the
sweetest of the two sugars and grow more
slowly in sweetness than either glucose or
sorbitol (Cameron, 1947; Moskowitz,
1970a; 1971b). The sweetness curves of
glucose and sorbitol are parallel in log-log
coordinates, as are the curves for sucrose
and fructose. Below each set of functions
are the generating equations that were
used in the simulation.

Glucose-sucrose and fructose-sucrose
mixtures follow similar contours. For
example, at a fixed sweetness when the
concentration of glucose is increased, the
overall cost of the mixture decreases. This
occurs since glucose is far less costly than

sucrose. For fixed costs the cheapness of
glucose far outweighs the sweetness ad-
vantage of sucrose. Similar arguments
may be made for mixtures of fructose
and sucrose wherein fructose is more
expensive than sucrose.

When fructqgse is combined with sorbi-
tol, however, the factors of cost and of
sweetness compete against each other.
Sorbitol is less expensive than fructose
but fructose is much sweeter. The result
is a slight increase in the sweetness of a
mixture with increases in fructose con-
tent when the cost is held constant. Asa
general rule then, mixtures of this type in
which the cost favors one material and
the sweetness favors another, material
will tend to have flatter contours. This is
especially true if costs and sweetness
ratios are approximately commensurate
and counterbalance each other. Steep
contours will occur when one dimension
(cost or sweetness) markedly overrides
the other.

Figure 4 shows a series of sorbitol-glu-
cose mixtures in which the sweetness was
fixed at one of four values (40, 80, 120,
160). For each of several prices of sorbi-
tol (e.g., $0.10 per mole) the cost func-
tion was traced out. The result is a series
of cost contours for each sweetness level.
The shape of the contour changes as the
price of sorbitol is systematically in-
creased. At low sorbitol costs (e.g., $0.10
per mole) increases in glucose, the more
expensive sugar raises the cost of the
mixture. At intermediate sorbitol costs
(e.g., $0.30 per mole) there are two
optimum points, either very high concen-
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Fig. 4—Contours for glucose and sorbitol when overall sweetness of the
mixture was fixed at four values. Each of the solid lines reflects the
overall cost of the mixture when the cost of sorbitol is varied at 10:1

range (from $0.10—1.00 per mole}.

trations of sorbitol or very high con-
centrations of glucose. Finally, with high
sorbitol costs (e.g., $0.50), the price of
sorbitol militates against using it, and the
best strategy is to use only glucose. This
approach to tracing out the several possi-
ble contours elucidates the type of strate-
gy that might be used when a single
ingredient systematically varies in cost,
but can be replaced by another material
possessing many of the same properties.

Finally, Figure 5 illustrates the con-
tours that are obtained when cost is
maintained at a given level (either $0.40,
$0.80 or $1.20 per liter of sweetener
mixture) and the price of sorbitol system-
atically varies. The order of the cost
functions in the figure is maintained for
the sweetness function, so that the upper-
most cost function corresponds to the
uppermost sweetness function. Large
changes in sorbitol, when it is inexpen-
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the overall cost of the mixture is fixed at one of
three values. For each total cost, sorbitol costs
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sorbitol yields a new contour for total cost
(solid line) and for each contour of total cost
there is a comparable contour for total sweetv.
ness.
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jve, can be tolerated and offset by smail
changes in glucose without affecting the
cost function. The optimum then is to
use all sorbitol, with. concomitant in-
creases in sweetness. Intermediate prices
f sorbitol for fixed total cost reduce the
high sweetness when large amounts of
sorbitol are used (since the prices are
commensurate for the two sugars but
glucose is sweeter). For high costs of
sorbitol, both the price and the low
sweetness militate against producing a
high degree of sweetness when much
sorbitol is used, and mixtures tend to
have less sweetness with more sorbitol.

DISCUSSION

THE PRESENT STUDY concerns a mod-
el system in which the sweetener is
sampled in aqueous solution. Similar data
should be generated by experimental
means to test the approach in specific
food products. The technique of magni-
tude estimation permits this approach to
be used with relative rapidity and little
expense, and may be applied in actual
product development. In addition, the
fact that a multiplicative correction must
be used to account for synergistic effects
in mixtures is not a serious detriment, for
it requires only a change-of-scale for
sweetness. The values corresponding to
psychological sweetness may be multi-

plied by a correcting factor, so that they
represent the actual sweetness levels rela-
tive to a standard, or a computer program
can be written to account for the multi-
plier. Many other factors besides overall
sweetness enter into the selection of an
appropriate sweetener .and concentration
for a given food. Mixtures that maintain
sweetness at a fixed level may not be
equally acceptable to the consumer, and
specific parameters of each food have to
be considered before selecting any one
mixture. Hence, the present study pro-
vides only two constraints for mixtures:
the levels of sweetener that sum to a
given cost and to a given sweetness. Other
constraints may be the acceptability to
the consumer, weight of sweetener and
perhaps even caloric value.
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