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Abstract

The US Army Natick Laboratories is
conducting extensive theoretical analyses
of automatic homing technigues for gliding
airdrop systems for the purpose of opti-
mizing landing accuracy and groundspeed.
The analyses presented in this paper in-
clude application of optimal control
theory, general analysis of the basic
equations of motion and aralysis of the
comparative performance of several homing
methods in adverse winds using computer
simulation. The results may serve as the
basis for design of guidance hardware ac-
cording to specific user needs for accu-
racy in certain operational environments.
The analytical technigues may stimulate
interest in further studies since solution
of the problem for a general wind environ-
ment is by no means complete. In this
paper the problem is limited to unper-
turbed steady aerodynamic flight with
steering at bank angles less than thirty
degrees in either constant wind or varying
wind having accelerations of less than two
ft/sec/sec. Optimal control theory pro-
vides quantitative consideration of key
parametric relations although exact solu-
tion to the equations requires sophisti-
cated computation not practical for incor-
poration into guidance hardware. Analysis
of the basic equations of motion in a less
restricted sense ylelds closed-form solu-
tions assuming constant wind. These in-
clude radial homing and a computed homing
method which requires complete sensory
input data. The computed homing method
gives perfect accuracy with minimum landing
speed in wind of any magnitude. Results of
the simulated performance in adversely
varying winds show the more sophisticated
methods offer only slightly improved accu-
racy than simple radial homing.

Symbols
h Instantaneous height -
P Magnitude of position vector in wind
coordinates
o) Magnitude of position vector in in-

ertial coordinates
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Radius of Turn

Total time to ground

Instantaneous elapsed time

Horizontal airspeed component

Rate of descent

Wind speed

Wind-fixed coordinates

Inertial coordinates

Angle between position vector and hori-
zontal airspeed vector

Polar angle of position vector

Bank angle (angle between resultant
aerodynamic force vector and vertical
axis)

Polar angle of horizontal airspeed
vector (¥=6+43)

w Polar angle of wind vector (inertial)
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1.0 Introduction

The US Army Natick Laboratories is con-
ducting various studies of the potential
use of high performance gliding airdrop
systems. Since any application of gliding
airdrop systems to cargo delivery necessi-
tates incorporation of a guidance subsystem,
considerable effort is being expended in
studying the aspects of homing control pe-
culiar to low speed gliders in the wind en-
vironment. Although actual homing systems
have been tested by other agencies, the
theoretical aspects of various homing
methods have not been studied in significant
detail. Thus, before initiating any hard-
ware development, this Laboratory has under-
taken theoretical studies of homing methods
in order to ascertain their salient charac-
teristics. The work presented in this
paper summarizes this effort to date.
While the study has indicated the merits
and salient features of several concepts,
it will become clear to the reader that
much opportunity remains for improvement in
capabilities within a variable-wind envi-
ronment.
as considered in this
principles by which a
can be guided over

The basic problem
paprer is to formulate
steadily moving point
the ground so that it arrives at a prede-
termined target point after a fixed time
interval. The vertical velocity of the
point is assumed constant. The lateral mo-
tion is determined by the constant air-
speed, the radius of turn with respect to
air and by the displacement caused by wind.
The sole means of puidance control is as-
sumed to be variation of the radius of turn
(or the related turn rate,¥). The radius
of turn varies inversely with the tangent
of the bank angle. The bank angle is
varied by canopy deflection actuated by
servo motors. Although varying winds are




employed, the variation is assumed to be
insufficient to disturb the steady aero-
dynamic motion so that the sole effect of
the wind is a displacement relative to
the ground. -

This paper presents three different
approaches to the problem. The first ap-
proach applies the mathematics of optimal
control theory with a system of equations
forumlated to optimize accuracy, landing
speed, and turn rate. The second approach
involves solution of the basic equations
of motion with several simple steering
functions. The third approach involves
computer simulation of various feedback
steering laws predicated on various amounts
of sensory input data.

Although no specific consideration has
been given to design requirements for gui-
dance hardware, most control methods pre-
sented in this paper are within the state-
of-the-art in guidance technology. The
most sophisticated method used in the final
comparative performance study (Method D)
would require a radio navigation system
comparable to the aircraft omni-range with
distance-measuring equipment (VOR/DME) al-
though at substantially reduced power.

The control logic could be performed by
analog circuitry. The exact solution, how-
ever, of the optimal control equations
would exceed the capacity of on-board
computational equipment.

2.0 General Proklem Definition

2.1 Steady Motion

The basic assumption to all analyses
in this paper is that the rate of descent
and the alrspeed of a gliding airdrop sys-
tem are steady and are not perturbed by
changing wind velocity or by control actu-
ation. W¥ind accelerations used in the
study presented in Section 5.0 are always
less than two ft/sec/sec. A longitudinal
dynamic flight model of typical gliding
systems shows that the effects of this
»cceleration are of second order and that
the assumption of instantaneous response
is reasonable. Control actuation for a
turn causes both a change in steady state
horizontal and vertical velocity cowponents
and a damped oscillation about the steady
state values. These affects are neglected
for the following reasons: :

(1) Primarily only the vertical velo-
city is affected which changes the time of
flight but not the homing characteristics.

(2) Where non-proportional (bang-bang)
turn control is used as in Methods A,B and
C, the motion consists mostly of steady os-
cillations between equal bank angles re-
sulting in reasonalbly steady average velo-
city components.

(3) Where turn rate is continuously
controlled, a maximum turn rate is fixed
such that angle of bank does not exceed
30 degrees with turns at lower rates most
of the time. The assumption of steady

motion greatly simplifies the analysis -
while neglecting effects which are only
second order to the guidance problem.

2.2 Landing Constraints

The objective of a control method is to
constrain the motion of a steadily moving
point mass subject to wind drift so as to
land near the intended target and to be
heading into the wind. The two constraints
are of equal importance since cargo would
be lost either by landing too far from the
target in most environments or by landing
at a ground speed which is too high. The
basic purpose for developing gliding air-
drop systems is to land cargo on small un-
improved drop zones. The difficulty of de-
signing impact attenuation devices is sig-
nificantly compounded at higher horizontal
velocities due to uneven terrain and ob-
stacles. Therefore, the landing speed
should not exceed the landing speed for the
no-wind case.

2.3 TFquations of Motion

The basic equations of motion relative
to inertial coordinates (Figure 1) are

. s A Al 3
P = ~u cosB+W cos@+¥y siné (1)

p€= -u sinﬂ—wxsin9+wy cos@ (2)

The equations governing turn control are

V=8 +B+ 7T (3)
RV 6+83 ' (u)
@= u/r (5)

(Target)

FIG1 GEOMETRIC RELATIONS
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Ay = (r/u)(uvsinEY—aux[cost—l]) (7)
+wyAt




A, o= qx(cosﬁf—l)—auysina¥ .8)
o uy': uy(cos&Y—l)+aquinAY’ (9)
where '
o ¥ = Atu/r

(10)

XU, -yu
v %
7 |xuy—yuxj
for "bang-bang" control (i.e., constant r).

But a = 1 for proportional homing where the
sign of r determines the direction of turn.

Transformation to a wind-fixed coordi-
nate system is accomplished by the follow-
ing relations which involve both transla-
tion (x,y)*(Xl,Yl) and rotation (X;,Yy)~>
(XQ,YQ):

Xl = xtw h/v (12)
Y, = yiug h/v (13)
w = arctan wy/wx (14)
X, = Xjcosw+Y sinw (15)
Y, = chosw—Xlsinw‘ (16)
6, = arctan(Y1/%y)- w (17)
Y u,-X;u
By * arctan * ! (18)
-(Xlux+Yluy)

In a steady, uniform wind use of the wind-
fixed coordinate system (X,Y) allows sim-
plification of the basic equations of
motion to

P o= —u00562 (13)
P = ~usinﬁg (20)
Vo= 6;+/% (21)

with the resulting control function inde-
pendent of wind speed. In all cases the
target is assumed to be the origin of
inertial axes (x,y).

3.0 An Application of Optimal
Control Theory®

In this section the control of a glid-
ing airdrop system is viewed in the con-
text of optimal control theory. The besic
philosophy is taken that at sometime t,
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intermediate between the launch time 0 and
the terminal T an estimate of the wind vec-
tor is made available based on measurements
taken in the interval ODstet, . Under the
assumption that the wind remains constant
over t <t<T, an optimal control problem is
formulated which minimizes the terminal
distance error from the target. The fil-
tering problem of estimating the wind based
on available measurements is not considered
in this paper.

Assuming a constant wind in the hori-
zontal plane with components (W _,¥,) and a
constant rate of descent, the equations of
motion governing the parachute in cartesian
coordinates are given by

%= u co§V+WX (22)
Y = u  sin¥+w (23)
o= —%~ tan¢ (24)

where U is the velocity vector of the para-
chute relative to air with components u_ =
u cosw and u, = u sinw, and ¢ is the
bank angle of t%e parachute. The magnitude
of ¥, u = (lux|2+lu 12)1/2, is assumed to
be constant and hence control is exerted
through by rotations in the servo-motor

connecting the control lines.

Let a time-varying transformation of
the origin be made according to
(25)

- - g
X = x+(T t)v.X

(t,€t<T)

1

Y y+(T-t)Wy (26)
Then minimizing the terminal distance p(T)
= [Ix(T)] 2+ ly(myr 232 is qu}valent to
minimizing [ XCT) 2+ lv(T)127172, 1n agai-
tion let the Independent variable be trans-
formed via

(27)

and define new dependent variables via

X Y
K4 T e P
1 u (T-t ) s u (T—to)
o
M F ¥ s (T-t )¢

/u: 1:an¢

u
Ir terms of threse variables the equations

of motion become
x' = cos ¥ (282
1 3
. (02T <1)
X, = sin hoN (20)
nh o= M (30)
where prime denotes differentiation with

respect to T,




The problem is to determine a control
function w (), 0¢ T£1, wvhich minimizes the
termanal distance from the target, [ X
(1) “+ x_(1) 29172 ynile not.requiring
excessiveély large bank angles. The fol-
lowing performance index reflects a number
of desirable features for this problem.

2P = P2

2
le(l)l +lx2(1) + ql‘XB(l)—cu

2 ! 2

-mheq S Y 4T (31)
2),

The first weighting parameter (q.20) re-
flects the desirability of having the
parachute point upwind at the terminal
time in order to reduce the total hori-
zontal velocity at touch-down. The second
parameter {q, = 0) weights the "cost™ of
control on %he interval 0%£T£1 and guaran-
tees a finite value to the quadratic con-
tent of the optimal control signal. Put-
ting q. = 0. the problem can be formulated
with the terminal constraint that X, (1) =
w4+, Putting q, = 0 requires a side con-
straint on/lsuc% as lu(TiléM, 04rs1, in order
to have a meaningful problem.

In terms of optimal control theory (3),
the Hamiltonian for the unconstrained pro-
blem (q2>0, M =o0) with the equations of
motion &s in Eq (28), (29), (30) is given

by
H (AX,x) = Afosx3+A25inx3+A3A+ % (82)
2
a, M
where (A, ,A ,A ) are the adjoint variables

:
which sa%isgy fhe differential equations:
N= -dH i = 1,2,3.
! 3)(,-

Applying the "Minimum Principle" of
optimal control theory, the necessary con-
ditions for Eq (31) to achieve a minimum
are that H (A,x,u«) be minimized over«,
i.e. #= -As3/qs , and that the following
transversality conditions be satisfied.

A1) = % (1),4,(1) = %, (1)
Ag(1) = q;[x (1) - e-m]
(If q. = 0 the terminal constraint on A

is replaced by the terminal constraint
on Xg,: Xa(l) = W+ T, )
Solutions to the above unconstrained
optimal control problem have been ob¥ﬁ§ned
using an algorithm due to Martensson .
Since the computations are carried out in
the normalized coordinates, the resulting
trajectories represent the solution to a
continuum of initial data in the inertial
coordinate system via the relations

u [T~toj[kl(;:20 ’]
o

- W [T-t]
X

X(t) = (33)

¥(t) = u [T-t ] [X t-tg T -(ay
o 2 )
ey
-W [T-t]
y
Yoy = x, (Eto (35)
T-tg
Pty = tan—l( u /g (t-ty) (36)
(T-t )
o T-t

Q

The corresponding trajectories in inertial
coordinates are showin in Figure 2. VNote
that the variation in bank angle ‘is the
same for each of the two wind conditions
(Figure 3).

y
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FIG 2 EXAMPLE OF OPTIMAL TRAJECTOR.
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FIG3 BANK ANGLE VARIATION FOR TYPICAL
OPTIMAL TRAJECTORY

A study of the optimal trajectories is
useful in establishing the region of initi-
al conditions from which it is possible to
reach the desired target. This region is
contained within the unit circle in the
normalized coordinate system. Further
studies should reveal the degree to which
reasonable terminal accuracy can be
achieved under optimal control using a
modest control deflection. However, such
trajectories lend very little Insight as to
the nature of the optimal feedback control
law. Essentially this involves obtaining
a closed-form solution to the nonlinear
two-point boundary value problem for ar-
bitrary initial data. An initial study
in obtaining this solution has been given,
but more remains to be accomplished before
substantive resultfsgan be reported of any
practical utility.




4.0 Solutions of Equations of Motion

4.1 Deﬁloymént Window

_The simplest solution to the equations
of motion is for the case of straight
flight in uniform Wind. This solution
yields an important result which may be
used to define the suitable region for
initial deployment (i.e., "deployment
window") for all sophisticated control
functions. The locus of initial positions
from which a straight path to the target
can be flown in time T = h/v is given by
the equation

(x+wxh/v)2+(y+Wyh/v)2 = (u h/v)? (37)

which at a particular altitude h is a cir-
cle of radius (u h/v) centered upwind at
the point x = wxh/v, y = W _h/v. Straight
flight is accomplished by thaintaining a
heading toward the center of the circle.
Note that if, at one level, flight is
initiated at the edge of the circle with
proper heading, the relative position on
the circle will remain at all subsequent
levels. The target (i.e. - the origin) is
within the circle as long as u>w. The key
feature of this circle is that it repre-
sents the absolute limit of deployment po-
sitions at a given altitude from which the
target can be reached for a given average
wind vector. If a glider is deployed out-
side the circle it cannot possibly reach
the target maintaining velocity components
u and v. But if it is deployed inside the
circle it has excess time during which it
can maneuver. However, if it is inside
and near the edge of the circle but is not
headed toward the center, then it also mav
not reach the target because of altitude
lost during the required turn. The direct
proportionality to altitude may be used to
compensate for heading error by calculating
the circle dimensions for an altitude high-
er than the actual deployment altitude
according to the altitude lost during a
180 degree turn. Simulation of manual
control has demonstrated that the entire
area within the compensated circle is
usable for deployment. The derivation of
the circle remains valid for the average
or height-integrated wind vector in a
varying wind.

Automatic homing methods may not be
able to use the entire deployment circle
because of certain characteristics pecu-
liar to the guidance mathematics. For
example, radial homing (Section 4.2) .re-
quires a deployment window which is an
ellipse whose major axis coincides with
the diameter of the circle along the wind
direction and whose minor axis is equal to

l/ug—w2 (h/v)

This may be considered indicative of the
inefficiency of radial homing in high
winds. (Figure 4) A more sophisticated
control method such as Method D discussed
in Section 4.3 and 5.0 may use the entire

circle as a deployment window. TFor vary-
ing winds a deployment window may be con-
structed using the circle (or the ellipse)
although some altitude compensation should
be allowed. Assume ranges of W, € W € V¥
and w,*w€w, for the magnitude afid direction
respectively, of the wind and then con-

" struct.circles (or ellipses). for .each of

the four cases (W ,w ), (W, e ), (W swl>
and (¥_,w ). . The deéloyment‘window is
then tRe Rommon intersection of the four

regions (Figure 5).
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At a given altitude, the size of the
deployment window is proportional to the
glide ratio (u/v). Tor glide ratios of
3 or greater the deployment windows above
1,000 ft. become significantly large. A
size can be chosen which would allow a
particular transport aircraft to circle
within the deployment window thereby re-
moving the dependency of accuracy on exit
interval. This feature of the deployment
window is a clear indication of the super-
iority of gliding airdrop systems over




standard airdrop systems in that, for com-
parable accuracy, the deployment window
for standard airdrop systems is merely a
point!

4.2 Radial Homing

Radial homing is very attractive from
the view point of minimizing the amount
and sophistication of peripheral equip-
ment. Typically the elements of a radial
homing system would consist of a signal
transmitting device and the appropriate
electro-mechanical means to sense relative
heading (B) and to cause the parachute to
maneuver in response to the transmitted
signal. Control over the direction of the
horizontal flight path is thus effected by
using the ground to air communication to
fix the angular orientation between the
parachute's airspeed vector and the trans-
mitter.

Radial homing is defined in the strict
sense by direct constant alignment of the
parachute's airspeed vector with.a radial
line from the intended target. ) With no
disturbing wind this steering routine '
would produce a straight line course to
the target. Practically, however, wind
effects must be reckoned with to determine
trajectory characteristics and launch cri-
teria. Under the assumption of a uniform
wind velocity and constant gliding air-
speed the two single differential equa-
tions which embody the kinematics of ra-
dial homing are Fq's (1) and (2) with
W% W, w20 andB% 0. Closed form so-
lXtions to this set are obtainable by
direct integration giving the relation-
ships

> = K secb (Sec9+tan9)A (38)
ut/p = (M{X-1)(A- sing,) (39)
Where:

(1) K is a constant of integration
dependent upon deployment conditions.

(2) A % u/w, the wind penetration
parameter.

(3) () denotes launch value. Eg
(39) is carrfed out between the limits of
P, ,6,to the position where P is zero, so
that t represents the total time to reach
the target from a variety of launch po-
sitions.

The trajectory relationships Eq (38)
shows that under the radial guidance con-
straint, a gliding system without wind
penetration ability (i.e. A% 1), can never
pass directly over the intended point of
impact. However, when the glide airspeed
is greater than the wind speed (A>1) the
parachute has the potential of always
reaching the target, provided there is
sufficient flight time. FEq (39) defines
the flight time for any specified radial

coordinate selected relative to the target
and a longitudinal axis aligned into the
wind. When the time is fixed Eq (29) can
be written in the form

P, = I/ {1-(1/N)sin §} (50)
where
J = (ut)(A?—l)/>? is a constant.

This equation is the polar form of an
ellipse and represents the region in which
a radial homing trajectory will generally
have sufficient altitude to fly over the
target prior to impact (Section 4.1).

Eq's (38) and (39) describe the per-
formance of the radial homing steering law
neglecting variable wind and finite radius
of turn effects. The general target-
seeking atributes implied by Eq's (1) and
(2) and embodied in Fq (38) are relatively
unaffected by the idealizations assumed
herein. In practical applications, the
accuracy of radial homing is largely deter-
mined by the character of the orbit flown
after reaching the vicinity of the target
by a system having a finite radius of turn.
A discussion of thi§ aipect has been pre-
viously reported.(l (2 The motion of the
system afer reaching the target is governed
by the equations

X = r [l+cos(ut/r)] (41)

Y ~r[{(ut/rA)-sin(ut/r)] (42)

H

for 0 £ (ut/r) £27. This motion consists
of a 360 degree rotation from a position
over the target (heading upwind) to a posi-
tion downwind of the target from which
straight homing flight back to the target
is executed. Since, in general, such uncon-
trolled variables as exact position within
the deployment window and initial heading
will cause variation in the altitude at
which radial homing to the target is com-
pleted, it is reasonable to assume that the
probability of landing position and orien-
tation is proportional to the time spent
on various portions of the orbit. Position
probability has thus been found to vary
according Ff)the following relation
(Figure 6)
1.70-0.84 w/u
R/r = e (u3)
¢ 1.27-w/u

The probability of landing at a speed less
than u 1is given by Figure 7.

Po(RR) L (qlyy 2Resdnlu/u) o (u)

Eq (43) is derived from the ratio of time
spent facing upwind (between the extreme
point§l?f the orbit) to the total orbit
time. ~°

4.3 Perfect Uniform-Wind Trajectory

After some examination of the basic
equations of motion (Section 2.3) it

i
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becomes apparent that both the problem of
miss-distance and of orientation into the
wind at landing could be solved by employ-
ing the control law

B =6/

where k would have some constant value.
This law restralins to approach zero as

¢ approaches zero. Thus, if the axis fronm
which @ is measured is defined to point
downwind, and if some reasonable function
permits variation of altitude such that
altitude approaches zero as approaches
zero the problem could be solved. Sulb-
stitution of Ng (45) into the basic equa-
tions of motion (Eg's (19) and (20))yielcls

P F -u cos (8/)) (u6)

pf= -u sin (B/k) (47)

from which it follows that

(L;S) .

(1/p)dp = cot (&/kx) d& i (u8)

This may be integrated to obtain the
ground “track :

P . (lsin (8/x) ! K (49)
P, \]sin (§/K)]

in which the subscript ( ) denotes initial
conditions. Fq (48) allow® a substitution
for p in Eq (46) to obtain

k-1
=Py {sin (€/X) y 46 (50)

ét = u (sin ZQ/k;

8,
_ p_/u _

T= ([sin (Q,/k)]k)f[sin(é’/k)]k 96 (51)
' 4]

For various integral values of k, complete
solutions can be obtained for both the
trajectory and for the required flight
time T to the target from any initial
point (p ,& ). Also we can convert T to
altitudeohcoby the simple relation h_ =

vT so that at any point (p,f) an altitude
h  can be computed from which flight to
the target can be made using the law

B=86/x.

After examination of the properties of
Fq's (49) and (51) it is apparent that for
K = 3 a suitable steering retionale can be
formulated using r/u as the control para-
meter

a
r n
(h_/h)" (52)
- = 161 c
u 1g0(m) -8
where
- 3p_v/u («5 (53)
he F sin°(6/3) £(180)

sin (26/3)
o

Iq (52) is a feedback steering law which
tends to drive /3 toward 6/3 for h = h,

to drive B toward 180 degrees for £ > h,
and to drive 4 toward zero for ho<h. The
underlying rationale is that while motion
is generally toward decreasing €, at any
value of ¢, h  increases as p increases so
that if too close and too high the correc-
tive action is to fly radially outward
(Figure 8). ©Fq (52) can be modified to
l1imit the minimum turn radius

=2 B

a r
= [———-—-———-———-— n +{; .
N (h /h) min
oo (deb) e 4

The parameter n may be varied to control
the abruptness with which steering goes
from €/3 to zero or to 180 deprees. A
value of n = 20 gives a virtual step func-
tion. Values in the range 2£n#£ 10 tend
to give the best results.
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Although the steering is not precise,
the function is highly stable and results

in excellent accuracy (Method D, Figure 9).

y
~ Method A
(Radial Homing)
_Method B
Method C”
“Method D
FIG 9 SAMPLE OF HOMING METHODS

If &,p and Bare relative to the wind fixed
axes X,Y which are rotated so that ¥ is
parallel to the wind vector, nearly perfect
dccuracy and orientation is achieved (with
no limitation on the wina speed) from any
position (p >0) within the appropriate

deployment circle.

Of course, the entire derivation is
predicated on a uniform wind invariant in
both speed and direction. 1In order to
attain reasonable performance in varying
winds as discussed in Section 5.0 the
ratio hc/h is multiplied by the factor

1 - baw(1 - 181y
at *56
which appropriately biases the steering to
partially compensate for wind gradients
according to the rationale:

Aw/ At 161 h 15)

crrer 2 LN S

<0 <90 increase toward 180
<0 >90 decrease toward 0
70 <90 decrease toward 0
70 > 90 increase toward 180

A systematic method for determining appro-
priate values of bhas not heen formulated.

4.4 Other Homing Methods

Examination of Eq's (19), (20) and
(21) shows several other possible "ad hoc"
control methods. Two such methods are
found by employing the relationsAB= K sin/
and 3= X, In each case, equations can be
found for K such that p becomes zero at
t=T=h/v. However, these functions do not
allow control of orientation relative to
the wind at landing.

5.0 Simulated Performance Study

5.1 Control Methods

Four automatic control methods were
selected for comparative evaluation using
computer simulation. These four methods
represent a wide range of complexity and
sophistication:

Method A - YNon-proportional radial
homing in which the glider turns with fixed
angular increments and enceavors to point

toward the target at all times. This is
the simplest tyvre of homing.
P"ethod P - Radial homine with exnanded

cone of silence. This method is icdentical
to Method A except that the cone of silence
over the target is exvanded so that its
slope has approximately the same macnitucde
as the effective glide ratio of the glicder.
The glider is programmed to turn in a di-
rection opposite to that in which it was
turning unon entering the cone of silence
and to maintain the turn until out of the
cone of silence.

Yethod C -~ MYodifled conical homing in
which range altitude and rarge-rate are
sensecd in addition to relative hearine with
control to raintain a constant equality
between range/altitude ratio and range-
rate/rate of descent ratio. The glider
flies along the surface of a cone whose
vertex lies at the targset. / modification




is added according to the equation:

~% :‘% +{K}cosﬂ '%Iv_l}A (55)

which facilitates wind compensation to
some extent.

Method D - Computed homing using
Eq's (53) and (54) with Eq (54) modified
for wind compensation (Section 4.3). This
method is fully described in Section 4.,3.
It is the most sophisticated method re-
quiring periodic measurement of range,
azimuth, range-rate, azimuth-rate and
altitude.

For general comparison, simulated man
ual contreol is used (Method E) as a per-
formance baseline. This simulation in-
corporates real-time display of ground
track with digital display of altitude,
bearing and azimuth. The operator presses
a key for left turn, right turn, or
straight flight each second using his
judgment of apparent closure rate. The
operator is experienced and aware of the
salient characteristics of each wind
profile.

Figure 9 illustrates the performance
of the automatic control methods in a
uniform wind. For each flight airspeed
is 30 fps, duration is 100 sec, maximum
turn rate 35.5 degrees/sec as in all
flights for this study. For illustration
a 20 fps steady wind is used. The flight
for Method A illustrates the typical
approach and orbit as discussed in Section
4.2. The flight for Method B shows the
typical effect of the cone of silence
which usually causes a final approach into
the wind though not always with such good
accuracy (4 ft). The flight for Method C
is a typical pattern although the poor
accuracy is not typical. The flight for
Method D illustrates the typically good
performance in a uniform wind of any
magnitude with gradual turns throughout
(Accuracy: 8 ft).

Several control methods have been
studied which are not presented in this
paper since their performance was not com-
parable to that presented in this section.
Proportional turn control for radial
homing will not increase the accuracy al-
though glide effectiveness might be in-
creased. Several methods were studied
which give excellent accuracy in uniform
wind with random landing orientation.

An attempt was made to achieve some degree
of orientation by use of an initial aiming
point downwind of the target. However,
results were poor due to the wide varia-
tion in heading on arrival at the initial
aiming point.

5.2 Wind Profiles

The parameters for the wind profiles
are shown in Table 1. Profiles a through
e were chosen as extreme cases in which

significant changes both in magnitude and
direction occaar although wind component
accelerations are less than two ft/sec/sec.
Profiles f and h have direction changes of
less than 45 degrees over 100 sec and
gradual decay in magnitude. Profile g has
uniform direction with decaying magnitude.
While no attempt has been made to simulate

" measured wind data, the wind profiles are

indicative of extreme wind conditions as
may be found in gusty winds over adverse
terrain. The intent is to show perfor-
mance in adverse conditions. Performance
in more commonly encountered conditions
is assumed to be better. A contracted
study is currently being made by NLABS to
study high wind environments and effects
on aerial delivery systems from which
more accurate wind profiles will become
available.

5.3 Simulation Techniques

For the comparative performance study,
the same airspeed (30 fps), duration
(100 sec) and maximum turn rate (35.5
degrees/sec) were used in all cases. In
Wind Profiles a through e, ten flights in
each were made with each control method.
Fifteen flights each were made in Wind
Profiles f and h with twenty flights made
in Wind Profile g. Tor each wind profile
the same set of initial positions and
orientations was used with each control
method. For Methods C and D the modifying
parameters were selected by trial and error
for each wind profile but were held con-
stant for all flights in a given wind
profile.

5.4 Results

A summary of average miss distance and
ground speed is shown in Table 2. The di-
mensionless ground speed is defined as

a0 k- CGu-w)
) G I— (56)
2w

which yields a value equal to 0 if directly
upwind; equal to 1 if directly downwind;
and equal to 0.5 if the speed equals the
airspeed, u. Use of this parameter facil-
itates comparison of ground speed in the
different winds. Analysis of the perfor-
mance for Wind Profiles a through e shows
that Methods B and C do not exhibit clear
and consistant improvement over Method A.
Therefore, only Methods A, D and E were
studied in Wind Profiles f, g and h.

The overall average values are:

Dimensionless
Groundspeed

Miss-Distance Std
(Wind Profiles a-e) Dev

Method A: 66 ft. 47 ft, 0.31
Method B: 61 ft. wy ft. 0.21
Method C: 80 ft. 66 ft. 0.37
Method D: €6 ft. 65 ft. 0.u45
Method E: 42 ft. w0 ft. 0.08




TABLE 1 WIND PROFILE CHARACTERISTICS

w, = a, sin (bxh + Cx)’ wy = a_ sin (byh + cy)
(hy=500 ft, h = -5 fps)

Profile a, b, ey ay by cy WX(S) Wy(S) i; Q; WX(;) Wy(;)
a 30 0.18 0 10 0.72 90 0 10 19 0 30 10
b 10 0.60 | ~60 20 1.20(-120 -9 =17 2 0 -9 17
c 15 0.18 | ~36 25 0.201] -40 -9 ~16 2 i 12 22
d 20 0.10 -20 10 1.50|-300 -7 é 2 0 10 10
e 15 0.18 | -36 25 0.501}-100 -9 -25 2 4 12 12
£ 30 0.14 19.5¢ 20 0.12 90 10 20 23 16 30 10
g 25 0.13 23.6 ¢ 0 0 10 0 20 0 25 0
h 20 0.12 30 20 0.18 0 10 o] 17 13 20 20

*Rounded to ft/sec

Miss-Distance Dimensionless

(Wind Profiles a-h) Groundspeed
Method A: 77 ft. 0.29
Method D: 66 ft. 0.37
Method E: 39 fr. 0.08

Histograms of the distribution of miss
distance for Wind Profiles a through e
are shown in Figure 10. The interval on
the histograms is half the standard de -
viation centered on the mean value. In
most cases the distributions are reason-
albe and detailed examination of the raw
data indicates the variations are due to
errors which may be considered random in
nature. However, certain peculiarities
were observed in the performance of
Method D which indicate the deficiency of
" any control function which is derived in
wind-fixed coordinates but which is forced
to operate in varying winds. The indi-
vidual flight performance in Wind Profiles
b and ¢ for Method D is shown below:

In Profile b, a peculiar condition
was encountered in Run 86. The miss
distance of 1,097 ft. is so far out that
it unduly biases the data changing the
average for Profile b from 125 ft. to
222 ft. and the average of 50 runs from
66 ft. to .86 ft. (changing the standard
deviation from 65 ft. to 160 ft.). It
was discarded in the data of Table 2. In
Profile ¢, the average is 21 ft excluding
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TABLE 3 SAMPLE CASES OF METHOD D

Run|Xo (F£)] Yo (Ft) [P (ft)[X fps
b 80] ~500 200 39 29
81 600 400 172 L33)
821-1000 -500 19 18
83[-2000 -200 68 28
8y 2000 500 180 by
851 2000 800 266 L7
86 500 2000 1097 48
871-2500 600 95 29
881-1500 1500 251 38
891-2000 -800 37 21
c |130 900 450 18 25
131t 1500 -500 22 30
132] 2000 1000 26 31
133 1500 1500 27 35
1341-1500 ~104 23 31
135}-2000 1500 21 23
136 {-2500 -800 20 19
137}1-1500 | -2000 270 15
138 500 | -2500 16 19
139 2000 | -1500 12 20
Run 137. However, including Run 137 the

Both Run 86 and Run 137
where the control
"fooled" by the wind

average is 46 ft.
are peculiar cases
function was badly

variation.
5.5 Conclusions

The observed improvement of the more
sophisticated homing methods (B and D) over
the simple method of radial homing is only




TABLE 2

- Summary of Performance

Dim

Wind Controlitax Avg Max| Avg| Avg

Profile Method |Dist | Dist| Spd| Spd| Spd

a A 121 78 138.3{31.010.55

B 117 63139.9130..5]0.53

20.0 # C 86 37 139.7(30.2{0.51

40o.0 D 96 L1 (40.0 24,4 (0.22

E 152 64 122.6120.9(0.05

b A 173 41 28.4114.610.10

B 177 77 {49.1115.5(0.13

10.6 C 165 91 |44.8123.40.33

49.86 D 266 125 47.8134.8(0.62

E 152 54 122.4113.61{0.08

c A 152 8 [U0.9124.9]0.36

B 171 55 (31.6|15.0(0.09

11.7 # C 150 67 147.6124.9 [0.36

48.3 D 270 L |38.6124.910.36

E 121 36 118.0114.4 [0.07

d A lu2 75 |40.1(29.2}0.46

B 122 56 [32.9]24.8{0.26

19.0 C 72 42 141.0129.9{0.50

41.0 D 186 65 |38.4127.7(0.40

E 86 3332.0/21.710.12

e A 162 | 51 |2€¢.8 8.210.08

B 96 64 110.3 5.8|0.04

3.8 2 C 305 165 ]53.2112.2|0.16

56.2 p 97 58 (53.1|36.70.63

E 97 24 124 .6 7.810.08

f A 621 120 |35.9]14.0 [0.1u

7.9 # D 170 51 |#41.2(18.8]0.25

521 E 157 49 15.7[11.9/0.09

g A 138 65 139.9(26.4]0.32

20.0 * D 91 45 [40.0023.9(0.20

40,0 E 126 33 {27.9121.6]0.08

h A 135 79 |36.4126.5 {0.33

20.0 D 301 108 139.6(|29.1 {0.46

40.0 E 62 28 |23.44(20.7 [0o.0ou
minimum attainable ground speed, fps
maximum attainable ground speed, fps

slight. The numerical values of the aver-

age are perhaps not as significant as the
distribution shown in Figure 10 which
shows that the performance of Method A is
least erratic. The intent of this study
is merely to show the relative performance
capability and not to predict the absolute
performance of each of these control
methods. llowever, it must also he con-
sidered that any system capable of ah aver-
age miss distance of less than 100 ft.
would be a substantial improvement over
any existing aerial delivery system part-
icularly considering the adverse wirnd con-
ditions studied here. Unfortunatelv, time
has net permitted studv of the effects of
varving airsreed ard maximum turn rate
which would chanre the absolute miss dis-
tances and which might also chanpge the
relative performance. In general, however,
the performance would be proportional to
the ratio of wind speed to airspeed.
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6.0 Sunmary

The analytical methods incorporating
optimal control theory and the closed-form
solution for the steering law B= &/k
appear to be the ultimate treatment of the
problem under the uniform wind assumption.
It is apparent, however, that significant
improvement over the performance of simple
radial homing in a realistic wind environ-
ment can only be realized if the problem
is formulated for a stochastically varying
wind. There may well be a feedback con-
trol law which will achieve better per-
formance. Further work in this area may
prove fruitful. For a suitable first
generation of gliding airdrop systems,
radial homing should be used with para-
meters selected for specific operational
requirements.
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