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INTRODUCTION

THIS REPORT is concerned with the determination of safe
sterilization processes for canned food, i.e., processes which
insure that the food is free of dangerous organisms. Although
ionizing radiation is the method of sterilization considered
here, the mathematical procedures described are equally appli-
cable to any method of killing microorganisms in food.

We may summarize the present . situation as follows. An
expert committee of the United Nations Food and Agricul-
ture, World Health Organization and the International Atomic
Energy Agency (1968) has recommended a criterion of safety
for radiation-sterilization which states that the probability
must be no more than 1 x 107'? that a dangerous microor-
ganism (usually Clostridium botulinum) will survive the
processing. The processing consists of exposing sealed cans of
food to a dose of radiation under specified conditions, and the
dose needed to satisfy the above criterion is called the 12D
dose or minimal radiation dose (MRD). The 12D dose depends
on both the microorganism and conditions (temperature,
salinity, pH, etc.) in the food substrate and is a measure of the
radiation resistance of the microorganisms.

The presently accepted procedure for estimating the 12D
dose follows the January 1971 recommendation of the Na-
tional Academy of Science~National Research Council’s Advi-
sory Committee to Natick Laboratories on Microbiology of
Food. The procedure consists of a set of experiments, collec-
tively called an inoculated pack, and a computation based on
the resulting data. The experiments consist of inoculating cans
of food with spores of C. botulinum, sealing the cans and
exposing them to doses of radiation. Typically, 107 spores are
inoculated in each can, 100 replicate cans are exposed to each
dose and the doses may range from 0—5 megarads in incre-
ments of 0.5 megarads. After irradiation all cans are incubated
for 6 months at 30°C. The cans are examined for swelling
weekly during the first month and monthly thereafter. At the
end of incubation cans are tested for toxin presence, and all
cans showing neither swelling nar toxin are subcultured for
surviving spores. The computation takes the resulting partial
spoilage data (usually based on surviving spores) and calculates
the 12D dose by using the Schmidt-Nank formula (1960).

In this paper we first present a coherent and rather simple
mathematical theory that is a basis for treating the results of
an inoculated pack. With the aid of this theory we then discuss
the inadequacies of the accepted procedure {outlined above)
and describe certain changes in both the experimental design
and manner of computation that lead to an improved estimate
of the 12D dose.

GENERAL THEORY

IN THIS SECTION we give a simple probabilistic theory of spore sterili-
zation and examine the conventional experiments in the light of this
theory. The theory brings one main difficulty into clear view and
suggests a way of dealing with it.

We assume that each spore in a given medium, irradiated under given
conditions of temperature, pH, etc. possesses a unique minimum lethal
dose, X. If subjected to a dose above X, the spore will be inactivated,
ie., it will be unable to produce toxin and descendants; otherwise it
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will remain dangerous. The lethal dose, X, is a random variable, and we
assume that it possesses a probability distribution function, G(x),

and probability density function,
G(x) = Probability that X < x (1)
f(x) = dG(x)/dx 2)
The 12D dose, which we call x, satisfies the equation
G(x¢) = Probability that X < x,
=1 — (Probability that X > x,) =1 - 107 ? 3)

In the experiments, n spores (typically n = 107) are put into a can
and irradiated at the dose x under the test conditions. We say that a can
is sterilized if all the spores in it are inactivated, and define Z, as the
minimum dose at which a can containing n spores is sterilized. Different
cans will have different Z,-values, hence Z, is a random variable, just as
X is. The distribution and density functions associated with Z, are
Dp(x), and ¢p(x),

@, (x) = Probability that Z,, < x (4)
Pn(x) = ddp(x)/dx (%)

Equation (4) means that ®,(x) is the theoretical fraction of cans steri-
lized at dose x.

There is a very important and well-known relation between Pu(x)
and G(x), which is a consequence of the fact that, if X,, X, ..., X, are
the minimum lethal doses of the n spores in the can, then Z, is the
largest of these doses. The relation, given in Gumbel (1958) and many
other books on probability, is

Pn(x) =[G (6)

A somewhat different form of this relation is obtained by rewriting
it as
— n
o0 ={1 - [1- Geol}n={1 - nl!ﬂ_ﬁﬁ(}ll}

~en [1— G0l 16

a result which is very accurate whenn > > 1 and 1 — G is small, which
is almost always the situation when we need to know ®,{x). Solving (7)
for G(x) we obtain with great accuracy

Gx)~1+n" ¢n dy(x) (8)
In addition we obtain from (5) and (6)
Pn(x) = n [G() |71 £(x) 9)
Finally, it can be shown (Gumbel, 1958), that
a0 ~ e ) 0 0 & ape v F ™) (10)
y = ag(x ~ Up) an

where Uy, the characteristic largest value, and oy, the extremal inten-
sity function, are found from

G(Up) =1 - 0™, ay = nf(Uy) = n‘i%un) (12)




The distribution defined by (10) to (12) is called the extreme-value
distribution derived from the distribution G(x). Formulae (6) and (9)
are exact, and (7) and (8) are such good approximations that they too
may be regarded a$ exact for all practical purposes. Equations (10) are
approximations to the exact relations (6) and (9) and are accurate when
Ix--Upl is not too Jarge. The region where (10) is most accurate is the
partial spoilage range, i.e., the x-values for which ®,(x) is near neither
zero nor one. The quantities U, and «,' are approximate measures,
respectively, of the location and width of the partial spoilage range for
cans containing n spores. As n increases, Uy, (but not necessarily o™ )
increases, i.e., the partial spoilage range moves outward.

In the conventional inoculated pack N cans, each containing n
spores, are exposed to a dose x, and after suitable incubation, counts
are made of the number, C(x), of cans that are sterilized or clean. Such
a pack can be regarded as a sample of N cans, each of which has
probability of sterilization ®,(x). It is well-known that the probability
that exactly £ cans will be sterilized is given by the binomial distribu-
tion,

Probability that ,« = g]

pyr [Pn0OTE {1 = @I N - a3)
Moreover, the best estimate of &,(x) that can be obtained from the
data is

dp(x) = estimate of dp(x) = £/N 14

and, if N> > 1, a)n(x) is approximately normally distributed about its
mean, ®,(x), with estimated standard deviation

O = [n (1 = du)/NIY as)

To summarize, we obtain from the conventional inoculated pack an
experimental fraction, (14), of cans sterilized at dose x, and this is the
best obtainable estimate of ®,(x). If packs are run at several different
doses, we obtain several points on an experimentally-determined graph
of @,(x). There will be some scatter or noise in this graph, much of
which is caused by the sampling error (i.e., the fact that <i)n(x) #
®,(x)) although some may also be due to random fluctuation in spore
load, n, and dose, x. Formula (15) is an estimate of the scatter at dose x
due to the sampling error.

Clearly, the inoculated pack provides quite a lot of information
about ®,(x), especially if packs are run at several different doses. How-
ever, this information is of little use unless it leads to comparable
information about G(x), for it is G(x) that enters the calculation of the
12D dose in Equation (3). In order to apply Equation (3), we have to
know both the general form and parameter values of G. We shall sec
later that it is relatively easy to estimate the parameter values of G from
data on ®,(x) if the general form of G is known, but it is not easy to
find the general form of G.

This seems strange at first glance, for we can find G(x) from ®,(x)
directly by means of Equation (8). The difficulty arises because the
doses at which ®,,(x) is known are far out on the right-hand tail of the
distribution G(x). All probability distributions look very much alike in
this region, and the scatter in G(x) that arises from the scatter in the
estimates of @,(x) will make it very difficult to see the small differ-
ences between distributions.

“Of course this difficulty does not arise i’ the form of G(x) is known.
It is usually assumed (Schmidt, 1963) that G(x) is of simple exponen-
tial form. There is some (perhaps inconclusive) evidence to support this
assumption when the spores are in a model system (i.e., a transparent,
fluid substrate), see e.g., Anellis et al. (1965). In the critique of the
Schmidt-Nank calculation we shall show evidence against the assump-
tion when spores are in a food.

Thus there is a need to determine G(x) from measurements of
@, (x). Since the conventional inoculated pack was not designed for
finding the form of G(x), we should expect that other experimental
designs may be superior for that purpose. Intuition suggests that differ-
ences in distributions will be most visible when we have data over a
wide range in x. The simplest way of obtaining this wide range is to test
at several different spore loads, i.e., values of n, because the partial
spoilage range moves outward as n increases. We shall pursue this line of
thought furtherin a later section.

A CRITIQUE OF THE SCHMIDT-NANK CALCULATION

THIS SECTION cé)'niains a sketch and critique of the Schmidt-
Nank procedure for estimating the 12D dose.
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The experimental procedure for a conventional inoculated

" pack has been described previously. The resulting data are

d,(x), see Equation (14), evaluated at one or more x-values.
The Schmidt-Nank procedure for estimating the 12D dose is
based primarily on the assumption that G(x) is of simple
exponential form,

G(x)=1—-e?x x20 (16)

If N is the number of cans tested at dose x, n is the number of
spores in each can and R is the total number of surviving
spores, then some simple manipulations show that x. can be
estimated from

%.=12D (17)

N X
D= (18)
log; o (Nn) —log;o R
Here D is the estimated valie of D, the decimating dose, i.e.,
dose at which the probability of spore death is

G(D) = 9/10

These formulae are not very useful as they stand because
there is no practical way to measure R. In the Schmidt-Nank
method this difficulty is overcome by a second assumption,
namely that exactly one spore survives in every can that is
spoiled (not sterilized), i.e.,

R=N-—E=N(]—%) (19)

or, using (14),
R=N[1 - &,(x)] (20)

if £ out of N cans are sterilized at dose x. This estimate of R is
used in Equation (18) and permits the evaluation of D and
hence X..

The Schmidt-Nank formula, (18), has been generally ac-
cepted as a simple, standard method- for estimating the 12D
dose. However, in recent years other procedures have been
suggested as alternatives to the Schmidt-Nank formula (Anellis
and Werkowski, 1968; 1971). This is evidence of growing
uneasiness about the accuracy of the method, but no system-
atic study of its validity has appeared. One is presented in the
ensuing paragraphs.

The principle criticisms that can be levelled against the
Schmidt-Nank procedure are listed here and then discussed
below.

(1) The assumption of an exponential distribution may be
wrong.

(2) The assumption that one spore survives in each can that
is not sterilized is questionable.

(3) The results of using the method on experimental data
are inconsistent with the assumptions.

(4) The procedure is confusing and unclear.

First, there is much experimental evidence that something
is wrong with the Schmidi-Nank formula. For, if it is applied
to experimental data at several different doses, it gives an esti-
mate of D (and hence x.) derived from each test dose. If the
theory is correct, the same D should be obtained from each
test dose, aside from random fluctuations. A typical set of
experimental results (Anellis and Werkowski, 1968) is repro-
duced in Table 1. It is clear from this and other data (Anellis
et al., 1969; 1972; Grecz et al., 1965; Segner and Schmidt,
1966), that the estimate of D increases very markedly as x
increases. This trend is unambiguous and far too pervasive to
be attributed to any sort of randomness. It is completely at
odds with the theory although it is hard to discern whether
assumptions (1) or (2) or both are at fault.
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Table 1—Radiation resistance of representa-
tive strains of C. botulinum spores in cured ham

No. of cans
with viable  Schmidt-Nank
Strain Dose C. botulinum D-value
33A 1.0 17/20 0.148
1.5 15/20 0.220
2.0 8/20 0.282
2.5 1/100 0.288
77A 1.0 16/20 0.167
1.5 11/20 0.245
2.0 5/20 0.309
12885A 1.0 19/20 0.149
1.5 5/20 0.206
2.0 3/20 0.267
3.0 1/100 0.346
4118 5 18/20 0.072
1.0 13/20 0.142
1.5 6/20 0.203
2.5 1/100 0.282
538 5 19/20 0.071
1.0 14/20 0.140
1.5 8/20 0.203
2.0 1/20 0.241

Second, the assumption (2) in.plies a relation between
@,(x) and G(x) that is different from (6). To see this, we
notice that assumption (2) implies that only two outcomes of
a can sterilization experiment are possible, namely either (a)
the can is sterilized or (b) exactly one spore survives in it.
Hence, on this assumption

1 — ®,(x) = theoretical fraction of cans in which exactly
one spore survives.

Since N cans are irradiated, the total theoretical number of
surviving spores is N [1 — ®,(x)] out of Nn spores exposed.
The fraction of spores surviving is

N1 — &, (x
JﬁNI;n()]* =1 — fraction killed = 1 — G(x)

Therefore, we would obtain
P (x)=1 ~n[l — G(x)]
orG(x)=1 —-n" [1 —P,(x)] ' 21

instead of (6), as a consequence of assumption (2). Equation
(6) was derived from the reasonable assumption that the mini-
mum sterilizing dose for a can is the minimum lethal dose for
the most resistant spore in the can. Assumption (2) therefore
gives results which disagree with that assumption in general,
and must be logically doubtful.

Moreover, it is clear that the true total number of spores
surviving radiation, R, is greater than (or equal to) the number
N — £, given by Assumption (2), Equation (19). Equation (18)
shows that an increase in R causes an increase in D, hence the
true D-value is larger than that given by (18). However, the
difference between these two D-values is usually not very great
because almost always R <<<Nn.

Finally the Schmidt-Nank calculation is confusing because
in deriving it thie authors did not give any clear indication that
two distinct distributions, G(x) and ®,(x), are involved. The

formulae show it, Equations (18) and (20), but the failure to
point it out explicitly has led to confusion when trying to
modify the calculation.

For example, Anellis and Werkowski (1968) describe an
attempt (by Weibull plotting) to ascertain the form of the
partial spoilage distribution, i.e., ¢, (x). The conclusion, that

. the distribution was nearly normal, is not seriously inconsis-

tent with the form (10). However, the interpretation was
marred by a number of confusing statements, evidently arising
from failure to distinguish G(x) from ®,(x).

To summarize, the most telling criticism of the Schmidt-
Nank computation is that its results contradict the assumption
that D is a constant. Another valid general criticism is that the
derivation is confusing. The specific assumption that one spore
survives in each spoiled can is illogical and should be aban-
doned, but it does not usually cause large errors in the esti-
mate of ‘D. The assumption of an exponential distribution is
cast ‘into doubt by the experimental evidence that D is not
constant:

It appears; therefore, that both the experimental design of
the inoculated pack and the procedure for estimating the D-
value should be modified.

ALTERNATIVE DISTRIBUTION FUNCTIONS
FOR SPORE DEATH
WE SHALL CONSIDER two distributions as possible replace-
ments for the exponential distribution. They are listed below.
Weibull-distribution
The distribution function is

G(x)=0 ,x <0

=1 —expl — (x/m)f1, x>0
where 7 >> 0 and 8 > 0. From Equations (12) we find

U, = n(logen)t/#
(22)

an = (3/Uy Nogen

It is important to notice that the exponential distribution is a
special case of this distribution, obtained by settingf=1.8>
1 gives a higher death rate, and § < 1 a lower one, than the
exponential distribution. Also, the Weibull distribution with
=~ 3.26 mimics the behavior of the Gaussian {normal) distribu-
tion in the sense that the mean, median and mode coincide
when = 3.26. However, the behavior of the Weibull distribu-
tion for large x is somewhat different from the normal distri-
bution, regardless of the f-value.

Lognormal distribution

The lognormal distribution has
G(x)=0, x<0
= Gy [Bloge(x/m)l, x>0

where G, is the standardized normal distribution function

X =z
Ggl(z) = 2my %[ X" /2 dx
= o

If Uy and o, are the U, and &, for the distribution function
G, then Gumbel shows that

U, =ne Ug/B
(23)
(e :Q%—ge‘Ug/B




and therefore
ap U, = ﬂag (24)

Other disfributions, such as the normal or Gamma distribu-
tions, could alsa be studied, but for the sake of brevity and
simplicity we shall limit ourselves to the Weibull and lognor-
mal distribution for the present. These are natural choices, the
Weibull because it is a generalization of the exponential distri-
bution and the lognormal because it is often the governing
distribution in bacteriological studies.

A NEW METHOD FOR FINDING THE
DISTRIBUTION FUNCTIONS AND 12D DOSE

IN THIS SECTION we present a general method for determin-
ing the form and parameters of the distribution function G(x)
from measurements ®,(x). The basic idea is a very simple and
familiar one. We hypothesize that we have a certain form of
distribution, G, and we subject the data, <f>n(x), to a transfor-
mation which would reduce the data plot to a straight line if G
were of the assumed form. The straightness (absence of curva-
ture) of the plot is a measure of how well the data support the
hypothesis about the form of G, and the slope and intercept of
the line provide estimates of the parameters of the distribu-
tion. In practice we usually consider several competing forms
of G(x), so that we subject the data to several different trans-
formations, one appropriate for each of the competing forms.
The form whose transformation produces the straightest plot
is the one which fits the data best.

We illustrate the procedure by deriving the formulae appro-
priate to the Weibull and lognormal distributions.

Basic Formulae
When x > 0, the form of the Weibull distribution is

G(x)=1 —exp| — (x/nw)ﬁ“']

where f,, and 7, are the parameters. We combine this with
Equation (8) to obtain

exp[ — (/)" 1 = — n log, @,
or
(x/m)™ = h +loge n
h=—1log, (—log. ®p)
We take logarithms again and get
Bw (loge x — loge Ny ) = log, (h + loge n)
From this we see that, if we define the transformation
Yw = loge [loge n — loge (— loge ¥p)] (25)
t =log, x,
then we obtain the straight line relation between yw and t,
Yw = Bw t — By loge Ny

provided that G is a Weibull distribution with parameters Bw
and ny,. This is the desired transformation.

For the lognormal distribution, the form when x > 0 is

G(x) = Gy [Br. loge (x/np)]
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where 1 and my, are the parameters. Omitting the details we
find that the transformation

v =G [1+n7 log, ®,] (26)
t =loge x
leads to the straight line relation
YL =B t — B loge .

if G is a lognormal distribution with parameters §;, and .-

In practice we do not know ®,(x). In its place we use the
quantities ®;(xy, ), the experimentally obtained fractions of
cans sterilized [see Equation (14)], at the test doses X,, m =
1, 2, ... M. To decide whether the true G has Weibull or
lognormal form, we construct two graphs of the data points
versus loge x, using Formulae (25) and (26), respectively. The
transformation which produces the straighter graph of the data
poinis corresponds to the likelier form of G. Then, if the plot
is of the form

y = A + Bt,
we obtain the estimated parameters
f=B (27)
n=eAB (28)

for whichever distribution has been chosen. The 12D dose, X,
is estimated using

Rew = T (27.63)11Pw (29)
if the Weibull distribution has been selected and
icLzﬁL e(7.0345/13[1) (30)

if the lognormal has been chosen.
Experimental design

In theory the above is easy enough, but in practice it is
often difficult to tell by eye which of the two plots is straight-
er, especially since there is noise (random fluctuations) in the
data. The discussion in the latter portion of General Theory
leads us to expect that both plots will appear nearly straight if
they cover only the range of x corresponding to the partial
spoilage range for, say, n = 10, Figure 1 shows this very
clearly. It contains the two graphs for the case where Cﬁn(x)
has exactly the theoretical values, ®,(x), derived from a log-
normal distribution with 8; = 2 and 1, = 0.2 when n = 10".
The graph given by the lognormal transformation (the upper
set of points in Fig. 1) is exactly straight. The graph given by
the Weibull transformation (the lower set of points) is not
exactly straight, but the curvature is so slight that it is hard to
see which graph is straighter. If we were given only the data,
we could not tell whether the distribution is lognormal with
BL = 2 and n, = 0.2 or Weibull with f,, = 0.664 and Nw =
0.0409. Moreover, we see from Equations (27) and (28) that
the 12D dose is estimated to be 6.74 if the distribution is
lognormal (as it really is) and 6.06 if it is (incorrectly) thought
to be of Weibull type. The large difference between these esti-
mates of 12D attests to the importance of finding the distribu-
tion form correctly.

The discussion at the end of the General Theory section
suggests that we can get around this difficulty by conducting
tests at several different spore loads. This: is illustrated in
Figure 2, where, as in Figure 1, the data:are assumed to have
exactly the theoretical values derived from a lognormal distri-
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bution with fp -= 2 and 7 = 0.2. However, we assume now

that the partial spoilage data have been taken at three different -

spore loads, n = 10°, 10°, 107. The upper graph for the log-
normal distribution is exactly straight. The curvature in the
lower graph, although not overwhelming, is rather easily visi-
ble, certainly ‘much more so than in Figure 1 which is now
reproduced as the portion of Figure 2 for n = 107. We .con-
clude that it is advantageous to test at several different spore
loads.

Computation scheme

In order to choose the likelier form of G from test data, we
have to decide which of the two graphs is the straighter. We
have seen in Figure 2 that, even when tests are run at several
spore loads, the curvature in the “incorrect” graph may not be
great. Moreover, in practice the situation will be worse than
shown there because of the random errors in the data. It is
most desirable to have a sensitive analytical test for measuring
the curvature of the graphs, rather than relying on the unaided
eye.
The computational method consists of approximating the
data, using the unweighted least squares procedure, by means
of orthogonal polynomials

y=Co + C Py (1) + C2 P2 (1) 3D

the data having been first transformed by the appropriate
Weibull or lognormal relation, Equation (25) or (26). Here

t=loge X, Py(t) =t —t (32)
/E/O
Y L]
and o
Y o~
5 .
4
3 — =
o""/c/’@ yw
2
8 1.0 12
t:loiex

Fig. 1—Graphs of lognormal and Weibull plots
of data derived from a lognormal distribution
forn=10".

where t is the average value of t over all the data points. Py (1)
is a second degree polynomial, orthogonal to P,(t) and a con-
stant, over the data points. Then

. . Co — Gyt

B=C,n=expl —(———)I (33)

If we define

Q {Yr[Co+C1P1(t)+C2P2(1)]}2

BVES

=1

(34)

Lo

54 L>
“§1 Yj ‘"[C0+C1P1(t)]f

then a convenient measure of the curvature of the graph is
p=(M-3)Q-Q/Q (35)

where M is the number of partial-spoilage data points.

We determine the form of F by carrying out this computa-
tion for both the Weibull and lognormal distributions and
comparing the two resulting values of p, py, and py. If py <
p1., we conclude that spore-death is governed by a Weibull
distribution; if p,, > py., then by a lognormal distribution. The
quantities p,, and pp obey the Fisher variance-ratio distribu-
tion and are the quantities that arise in the likelihood-ratio test
of the hypothesis that C, = 0. Comparing the values of p,, or
pr with the tabulated values of Fisher’s distribution for (1,
n—3) degrees of freedom permits one to make confidence
statements about whether C, = 0.

6 7
n=_10
\jL /’“"‘A‘A?
and ! i
yw Nn= lDS ‘ s/w
; At A
T3
| we A
@
o
n
Q/
4 . 2
o/
3 Per)
® e(Q’O,@
o
//e/’o )’w
[0}
2 — ~
0 S LO ‘t=\ogex

Fig. 2—Graph$ of lognormal and Weibull plots of data derived from a
lognormal distribution for n = 10°, 10° and 10°.




Having ascertamed the form of G, the constants B and 7 are
estimated using (27) and (28) and the 12D dose is given by
(29) or (30). )

The experimental design described in part (b) and the com-
putational scheme outlined above are the methods we suggest
as replacements ‘for the conventional inoculated pack and
Schmidt-Nank Formula.

EXAMPLES

THIS SECTION contains two examples in which we use the
preceding theory. The first example illustrates the use and
accuracy of the method proposed in the previous section.
Since sufficiently extensive experimental results from tests at
three different spore loads were not available, it was necessary
to use computer-simulated data for purposes of illustration.
The second example shows how the general theory can be used
with the absolute minimum amount of partial spoilage data,
one point, to show that the form of G(x) is probably not
exponential.

Example 1

By means of a computer program the artificial partial-
spoilage data shown in Table 2 were generated as the simulated
outcome of an inoculated pack. Nine partial spoﬂage data
pomts were obtained at three spore loads, n = 10 10° and
107. The data were passed through the Weibull and lognormal
transformations, Equations (25) and (26), and then subjected
to the least squares process of theé preceding subsections.
The resulting estimates are

Weibull: By, = 1.582, 7y, = .422, Xew = 3.439, py, =.069 (36)

Lognormal: f =3.928,7, =.658, xcp, = 3.941, p =4.278 (37)

Since py < pp, we conclude that the true distribution is of
Weibull form with parameters given in (36). Moreover, com-
paring the values of p with the 90% confidence limit of F for
(1, 6) degrees of freedom, we see that py, exceeds this value,
3.78, while p,, does not. Hence there is no reason to doubt
that the distribution is Weibull, but there is a great deal of
reason to doubt that it is lognormal. In this example, then, the
new method would unequivocally conclude that the distribu-
tion is of Weibull form with parameters given by (36).

The data of Table 2 were generated by assuming a distribu-
tion whose true form was Weibull with

Bw = 1.700, ny, = 470, Xoy = 3.31

and tainting the results with various (roughly realistic) random

Table 2—Simulated outcome of an inocu-

lated pack
Spore load Dose Fraction of cans
n {megarads) sterilized
107 2.4 19/40
2.6 33/40
10° 1.8 1/40
2.0 18/40
2.2 33/40
24 39/40
10° 1.3 4/40
1.5 17/40
1.7 36/40
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errors. Since we know what the true form is, we can verify

“that-the method gives the correct conclusion and observe that

the estimates f,, My, and (especially) X, are quite accurate
despite the random errors.

The fact that the method gives decent accuracy in thlS
example, where the correct distribution and values of ﬁw, Nw
and Xc, are known, suggests that the method is a promising
one. Many other §1mu1ated examples, not described here, have
given like results. Naturally the method has to be tested on
real, rather than simulated, data before a final decision is
reached on its usefulness.

Example 2

An ordinary inoculated pack for FDA clearance of canned
ham was run at Natick Laboratories with 107 spores of C.
botulinum in each can and 100 cans at each dose. The test and
analysis will be described elsewhere in detail, but the results
based on can swelling may be described as follows (A. Anellis,
private communication):

X< 1.7 all cans swollen
x= 2.0 75 out of 100 cans swollen
x=12.3 no cans swollen

We wish to see whether these results support the assumption
that the distribution is exponential.

If the distribution is exponential then we have a Weibull
distribution with § = 1,

G(x)=1 - e™/n (38)
and because of (22)
n = Nloge n
o =1/

Experimentally we have obtained
$(2.0) = 25/100 = 0.25
From Equations (10) and (11) we have
an(x — Up) =y = — loge[ — loge (P(x))]

Setting x = 2.0 and using @(2.0) as the estimate of $(2.0), we
obtain

1

;?'(2 — nloge n) = — logel — log, (0.25)]
Since n = 107 this leads to

2 16.118=-0.327

m
or
n=0.1266
Hence, because of (38),
G(X): 1 - C-7.899X

At x = 2.3 we have, therefore,

1~ G(2.3)=1.297 x 1078
Equation (7) then implies

B(2.3) = exp(—107 x 1.297 x 1078)=¢0-1297
=(.8784
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From Equation (13), with £ = 100 and N = 100, we see that P,
the probability that 100 cans are stérilized at x = 2.3, obeys

P={d(2.3)]'°% =0.8784'°0
=2.34 % 10

The smallness of P means that it is exceedingly unlikely
that we would get 100 cans sterilized at x = 2.3 if the result at
x = 2.0 is correct and if the distribution is exponential (i.e., § =
1). Since there is no reason to doubt the experimental result at
x = 2.0, we must conclude that it is very improbable that the
distribution is exponential. The conclusion would be more
striking if it were based on recoverable botulinum cells, rather
than visible swelling. These data are not yet available, but the
smallness of P suggests that the conclusion is not sensitive to
moderate changes in ®(2.0). In any case the results tend to
cast still more doubt on the assumption of exponential death
for botulinum spores in canned food.

DISCUSSION & CONCLUSIONS

THE FIRST conclusion of this paper is that the accepted pro-
cedure for estimating the 12D dose of radappertized food has
shortcomings that ought not to be ignored. Apparently its
most serious limitation is in the assumption of exponential
spore-death. If this assumption is abandoned, a procedure for
finding the spore-death distribution must be provided. The
experimental design and computational scheme outlined in the
new method is such a procedure. If it is used, inoculated pack
results can yield information about the spore-death distribu-
tion and hence well-founded estimates of the 12D dose.

Our second conclusion is that the proposed method is suffi-
ciently promising to justify further investigation. In particular
the crucial experiment consists of running tests at three or
more different spore loads on an organism and substrate where
the true spore-death distribution is already known with satis-
factory accuracy. The doses must be closer together, and the
number of replicate cans must be larger, than in previous

inoculated packs if a clear verdict is to be obtained.

Finally, we should observe that much more needs to be
done before a realistic mathematical model can be obtained
for such a complex process.
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