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Azimuth Homing in a Planar Uniform Wind

Arthur L. Murphy Jr.*
U.S. Army Natick Laboratories, Natick, Mass.

The planar trajectory of an azimuth homing gliding system manenvering through a uniform wind field is
presented. The kinematics of the motion is discnssed generating two first-order differential equations which are
separated producing an expression involving only position coordinates. A change of variables is introduced and
exact solutions ebtained by direct integration. The resulting trajectories fall into two categories classified ac-
cording to their targef-seeking or orbital characteristics. Flight paths in the target-seeking domain are shown fo
be convergent when the system has a wind penetration capability. The family of target-orbiting solutions are
shown to produce frajectories which are captured abont the target in elliptic spirals. Launch criteria are
established from the time solution which takes the form of an ellipse for all categories of azimuth homing, The
definition of a release path as the locus of points from which the flight time necessary to reach the target is con-

stant, follows from this resnlt.

_ Nomenclature

L/D = lift to dragratio

t = time

U = horizontal component of total airspeed vector

u = U/, horizontal airspeed

V = system total airspeed vector

o = radial offset angle

W = wind or field velocity

w = |WI, wind or field speed

X = horizontal space coordinate fixed to earth

¥ = horizontal space coordinate perpendicular to x and

fixed to earth
z = veriical space coordinate perpendicular to the x-y
plane

r = magnitude of the radius vector in polar coordinates
f# = angular position in polar coordinates

A = u/w wind penetration parameter

Subscript

i = initial

Introduction

UTOMATIC control of a vehicle in gliding flight

poses some interesting problems particularly when
aerodynamic performance is limited. A remotely guided
recovery system, utilizing some form of gliding deceleration, !
is an example of such a case. Typically, these systems operate
at relatively low airspeed with virtually no capacity for L/D
modulation. Discrete or continuous regulation of flight direc-
tion then becomes the principal means of trajectory control.
Consequently, investigations concerned with this specific
aspect of flight path management, take on practical
significance with respect to evaluating the capabilities of
various steering or homing techniques applicable to the
guidance of an unpowered gliding vehicle.

Analysis dealing with controlled gliding flight can cover a
broad spectrum ranging from the application of optimal con-
trol theory? to investigations concerned simply with the
geometry of the motion.? Contrasting the numerical trajec-
tory determinations which follow from treatments such as
those developed in Refs. 2 and 3, the results of this study are
analytic in scope. A class of closed form solutions are derived
from kinematic considerations of a particle maneuvering with
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constant speed through a uniform velocity field. 'Thi
representation serves to approximate the behavior of a gliding.
system executing moderate turns in a constant” wind en
vironment. Assuming a specific guidance law, or ‘what
amounts to a directional constraint on the airspeed Vector;
eliminates dynamic considerations. Consequently;: velogity:
relationships can be derived directly and sclutions for position
and time coordinates obtained by integration. These resulfs
serve to quantify the performance of the assumed guidance’
law while providing valuable insight into generalized
capabilities. : R

Analysis i
The guidance law or controller used in this formillation; s
thought of as one which causes the system to mainfain‘a fixed
angular orientation between the horizontal -projection of its
airspeed vector and 2 radial line connecting it to the infended ™
target. Figure 1 depicts the planar geometry of this mot
introducing the idea of what shall bé termed  “‘azimut
homing.”” The system is idealized as a point mass and und
the combined assumptions of constant L/D and moderate
turns, only the horizontal coordinates remain coupled;. The:
vertical mode, not shown in Fig. 1, is linear with time 4, as in=
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Fig.1 Kinematics of azimuth homing. -
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- dicated by Eq 3. The vector quanuty U defines the horizontal
component of the total airspeed vector V. {/ is constant in
magnitude, however,:its direction may be varied according to
control inputs: Azimuth homing, as defined, constrains U to
continttously- point- along the corrent radial at some fixed
angular offset &. The wind, or field velocity, W, is assumed to
be steady, to lie entirely in the x—y plane, and to point along
the y dxis in a negative sense. Motion through the wind field
serves to upset kinematic equilibrium and as a consequence,
the system is always.in a state of maneuver.

It is now possible' to derwe a vector eguation relating the
absolute velocity of the ‘system relative to an Earth fixed
reference, to the sum’ of ¥ and W. Expréssed in cylindrical
coordinates the scalar equatzons obtamed from this vector
equahty are: . S

'-i?'df_/f? w(hcosac-+sing) 1)
(r)dﬁ/dt ——w ()\sma+ cosf} (2}
' &z/dt_é;{;u)/ (L/D) 3)

where I, 8 and z are. the conventmnai cylindrical coordinate
demgnatlons.: :

_ Tra]ectory Determmatmn
General Formulahon '

Separatmg the tlme dependency from Eqs (1) and (2) yields
the expressmn‘ '

dr/ r“— (}~c05a )dﬁ/ ()\smoz + cos@ ) d (cosB )/ ()\smfx +cosf} (4)

Motivated by- physu:ai cons:deratmns, solutions to this dif-
ferential form may be divided into two categories, classified
according to their target seekmg or target orbiting properties.
These ciasmﬂcatrons occur naturally reflecting the system’s
capacity to sustam anguiar motion with respect to the target.
This ability is ‘evident from Eq:(2) throtigh investigation of
the parameter Asine. ‘When |Xsine | < 1, convergence to a par-
ticular ray résults. Givén suff1c1ent effectwe wind penetration,
the system’ ‘will “seek  this’ “stable - angular alignment as r
approaches zero. Hence, the terniinology, “‘target seeking.”
Alternatively, cyclic or orb:tal paths tan be described when
IAsinee I >>1. This velomr.y condition allows for continuous
angular motion-about the hommg pomt from all locations in
the wind field. :

Prior to mtegratmg Eq (4), a sm:pl:fled and physically
revealing version can be obtamed through the variable trans-
formatmn .

cosf= (cos',B'—_ €)/ '(1'-"56056) %)
where { is the so called “eccentric anomaly,” 3 nomenclature
originating from the development of this equation in orbiral
mechanics. The magnitude of e defined by Eq. (5) is constant
for values between zero and one, and for the purposes of
azimuth homing assumes the role of Asine or (1/Asinw) de-
pending upon the application, -
Target Seeking Trajectones : .
e=nhsine for IAsinel<1.T ransformmg Eqgs. (1 2 and 4} to
r, 3 space yields;
dridi=—w(l—e2)V2q| ()tz_e_z.)/(;,__e'z HER
+sing/ (1—ecosp)] ' (6
rdp/dt=—w(l—e2) %cos8 )]

drir=1(A\2—e2)/ {(1—e2)]1 " (dB/cosfh)
—d(cos,@)/cosﬁ(lm—ecosﬁ)_ : 3)
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Equation (8) Is integrated directly to give;
r=KsecB{1—ecosB)[secl + tang] &°—€?)/ (1—e)1*  (g)

where X is an integration constant.

The effect of the 8 transformation can now be appreciated
by allowing ¢, in Egs. (5-9), to approach zero while A is con-
strained to remain finite. In terms of physical coordinates this
defines the special case of radial homing.* A comparison bet-
ween Eqs. (6-9) for arbitrary ¢, with those produced when
e=0 reveals their similarity, particularly regarding Egs. (7)
and (9). It can be concluded, based on this simnilarity, that
azimuth homing, constrained such that |Asine|<1, is a
general form of radial homing when viewed in r—J3 space.
Therefore, the terminal state capabilities of radial homing
derived from the physical plane establishes these charac-
teristics for an entire azimuth homing family, The significant
features of these trajectories are summarized as follows.
Launched at sufficient aktitude, an azimuth homing system
will reach the target or homing point prior to impact provided
it has the ability to penetrate the wind, i.c., when the systems
generalized wind penetration parameter [A2—e?/1—e?] ¥ >
1. At target arrival the absolute or resultant velocity vector
will be aligned in a negative sense along the 8= — 7/2 ray. The
arbitrary alignment of the wind velocity with the y axis, which
assisted in the formulation of the basic theory, has no bearing
on these results. Any other axis selection merely constitutes a
rotation of the resulting trajectory relative to these primary
coordinates producing no effect on the end state. The ter-
minal characterisitics, (r=0, 3= —«/2}, are also essentially
independent of initial homing conditions determined by the
algebraic sign of ¢.
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Orbital Trajectories

e= {1/Asina} for |(1/Asine) < 1. Transforming Egs. (1),
(2) and (4} to r— B space vields;

dridt={—w/e}{1—e2] [/ {1—e2)¥" +
esinf3/ (I—ecosS )} 10

rdB/di=(—wie)[1—e2] ® 43))]
and, dr/r= (b/[1-—e2] ¥ )d—d (ecosB )/ {1—ecosB) (12}

where b=ctno. Equation (12} is integrated directly to give’

r=G(1—ecosf)e (B/[1—e2] 12)F 13)

where G is an integration constant.

The net behavior of Eq. (13} can be determined by con-
sidering separately, the properties of the trigonometric and
exponential factors which combine to form r. The quantity
(1—ecosp) is identified as a polar representation describing - -
one of the Limacon’s of Pascal, thereby defining a closed. .
curve in the r—j plane. The equivalent figure in physical =
coordinates is an ellipse and comprises the entire trajectory
when « is allowed to assume either of its extreme values (i.e.,
when o= +7/2). Overall, angular motion relative to the
target can be positive or negative depending upon the ar-
bitrary sign of the radial offset angle . Regardless of the'sen-:
se of change in @ or #, the argument of ¢ remains negative,
Consequently, the exponential terms always acts asa dampmg'_ :
factor, continually suppressing radial excusions in successive:
cycles about the focal point. Given the nature of the funcnons-’-l
defining- Eq. (13), the trajectories so generated may bc .
properly termed “EHiptic Spirals.” '

Launch Criteria

It is now desirable to obtain solutions in terms of the time
or altitude coordinate. Such relationships will be necessary i
identify spatial locations compatible with the trajectories;
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previously obtained. Returning to Egs. (2) and (3),
di=[(=L/DYuldz=[(=1/wYrd0]/[ Asinu+cos?] (14}

where r is now a known function of 8, or 8.

Solutions to Eq. (14), which exist at least in principle, can
now be attempted for both the target seeking and target or-
biting cases.

Time Integral

Two forms of Eq. (14) are generated by the respective
utilization of Eqgs. (7) and (9) or Eqgs. (11} and (13). The target
secking form of Eq. (14)is:

(LIDY(z,/u)= (—Kw[1—e2] »
[[sec2B8(1—ecosf)
(sech +tanB ) idi—ehri-eh ¥ gg) (15

The target orbiting version of Eq. (14) becomes:

(L/DY(z,/u)= —Ge/wil—e2] ©
{1 —ecosB)ed/li-<21" )R {16)

where in both cases integration on altitude passes from the
initfal point z; to the ground plane (z=0). Radial and angular
coordinates proceed from the initial state r, #;10 final
positions r, # which now specify the systems location at im-
pact. Both Eqs. (15) and (16) can be integrated by parts
producing the following solution which holds for either cir-
cumstance.

(L/D)Y(z;cosalr;y=[M (ZN2—1)] [A—sin{f;—a)]
[1—(r/r) )y (h—sin(f—a))/
(A—sin(#;, —o))] an

where the position coordinate r is given by Eq. (9) for trajec-
tories in the target seeking domain or by Eq. (13) for the
target orbiting case.

Release Path Definition

Given a specified launch or initial altitude z, system
parameters in terms of L/D, «, and A which reflects wind
properties as well, the following physical interpretation can be
attached to Eq. (17). Allowing for sufficient performance in
terms of either wind penetration ability, or the potential to
execute multiple orbits about the homing point, r can be made
to approach zero in Eq. (17). Then, relative to a known
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nominal wind direction, the curve so descnbed byt
eguation defines the locus of points {z; r;, 8;) from whlc a
azimuth homing trajectory will terminate precisely on target
Equation (17), with r=0 the final state, identifies thig’ releas
path or launch curve as an ellipse. It follows: from: thes:
developments, that trajectories beginning inside the; elhps
will arrive too early, (i.e. an excess altitude condmon) Hile
those initiated outside will fall short.

Summary and Conclusions

Analysis of a particular guidance technique: apphcabl
gliding vehicle flight path control has been presented:
development has proceeded through three phases as’ foI ow
1) formulation of kinematic behavior, leading: i
derivation of basic relationships, 2) mathematic
formation of variables with subsequent solution tc
governing differential equations, and finally, 3)- classi ica
and interpretation of results according to the dlctates
parameters.

The azimuth homing guidance technique has been: sho
possess desirable performance particularly: regardin
ability to either maintain position relative to'a homing p
ina captured splral orbit, or to ach;eve absolut targe

accuracy will not be possible in general carcu
However, a scheme employing this form of: guzdance
ted by computations utilizing position measyremen
used to control the entire flight. The radial offse
being capable of discrete variation, can be utilizéd 5o
just the trajectory to account for unconirollable:ch
wind velocity. The wind penetration paraimeter:
be considered as a control parameter assuming somi
modulation were possible. Theoretically,” and
spatial locations where terminal solutions: to: theia
homing problem exist, the entire landmg state ©
trolled.
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