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" Abstract: The fast kinetics technique of pulse radiolysis has been used to generate and characterize, in aqueous solution,.

L CoT) complexes containing the tetradentate 14-membered macrocyclic ligands 5,7,7,12,14,14-hexaméthyl-1,4,8,11-tetra-
" azacyclotetradeca-4,11-diene (4,11-dieneNg), 5,7,7,12,12;14-hexamethyl-1,4.8 1I-tetraazacycletetradeca-4 14~ dlene (4,14

" dieneNy), and 2,3,9,10-tetramethyl-1,4,8,1 I-tetraazacyclotetradeca-1,3,8,10-tetraene (1,3,8,1 0-tetraeneNy). The reaction of

- ¢ the hydrated electron; eaq—, with the Co(II) complexes (k ~ 5 X 1010 Mt sec” ') produces the corresponding Co(l) species.
" .Col(1,3,8,10-tetracneNy) is also generated by the action of COy~ and {CH;3)oCOH radicals on Co(11). The absorption spec-

- tra of. these monovalent complexes have been determined and their decay kinetics studied as a function of pH and added
scavengers.. The Co(I) species behave as bases, reacting with proton denors such as H;0F, CH;CO,H, H,PO,~, NH.Y,

. HPOZ"

, and H>O. They also behave as. powerful reducing agents, transferring an electron (lc

~10% to 108 M1 sec ) toa

variety of organic acceptors and one-electron metal complex oxidants such as Fe(11l), Co(IIE), Cr(IH), and Ru{liI) amine,
_blpyndyl and macrocychc complexes The CO(I) specieseact rapidly with NoO, CH;L, and Oa.

-. The chemistry:of cobalt complexes containing macrocy-
:clici or--tetradentate - ligands with delocalized electronic

. structurés may- be takentas: an approximate model for the
.- reactions of vitamin By in biochemical processes.3# Among
‘the oxidation states of cobalt; the Co(I) state has been pro-

" ‘posed as. 4 Teaction _mtermedlate in the reduction of cob-
- aloxime and aquocobalamin: by CO®>€ and in biological pro-
cesses as vitamin:Bjzs. 47 Co(I) species display. strong nu-
< cleophilic: character,: ‘readily ‘displacing. halide. ions from
“alkyl “halides ; producmg .cobalt-alkyl complexes.8-1® The

. catalytic role: of :sonie® Co(I)' complexes: has recently been'

_-demonstrated the! reductnon ‘of 'several. alkyl ammonium
- ions'% and'in the conversmn of n1trogen and acetylene to
‘ammonia’and éthylene.tt i
= Tt-hag previously: been: 1'eported12 13 that Co(I) compiexes

: contammg sthe’:.macrocyclic: ligands. 4;11-dieneNy and.
~aneNy'4 are exceptionally reactive ‘and: powerful reducing

agents and carinot be handled in ‘protic solvents when gener-
ated electrochemically from: the'corresponding. Co(II) com-
- plexes. Because of their:short llfCtll‘nCS, these species, or any
other: Co(I) macrocycllc spec:es, have not been character—
ized in‘aqueous solution;

" The technique of pulse radwlys;s_ s Well sulted o the :

study of such highly reactive low-valent species: The radio-

lysis of water provides a: means of selectwely genérating,

- one-electron’ reducmg or. oxidizing* agents. The hydrated
electron, e, 1s produced directly by the ionizing radiation
-and is a powerful reducing agent (Eo" =:2:8 V).17. Other
reductants, such as CO; 7 and: (CHg)ZCOH radlcals, can be

- generated by the reaction of OH radicals; produced in the

radiation pulse, with HCO;~-and: (CH3),CHOH, respec-
tively.'®1? The reactions of the radicals with solutes, such

as coordination complexes, can be monitored uging fast ki-
netics absorption spectrophotometry with a time resolution
of ~0.1 usec enabling the spectra of short-lived transient in-
termediates to be observed and their kinetics characterized.
In this paper we describe the reactions of Co(Il) com-
plexes containing the 4,1l-dieneNs, 4,14-dieneNs, and
1,3,8,10-tetraeneN4 macrocyclic ligands with reducing rad-

Yot

- (N HNj ' [NH Nj
. . ™NH N : . NH N
Mes [14]4,11- dlene N: Meﬁ [1414, 14-dieneN,
Y
Me.; {14]1 3,8, 10 tetraene N Me,-, fi4laneN,.

1cals to generate the cerrespondmg Co(1) species in agueous

" solution. The spectra and reactivities of these low-valent

complexes are examined: in detail. It is important to note
that the tetradentate equatorial ligand renders macrocyclic
complexes of this type stable towards displacement of the li-
gand from the metal center so that at least the macrocyclic
structure maintains its mtegr:ty upon change of the oxida-

‘tion state of the metal.

Journal of the American Chemical Society | 98:1'f January 7, 1976



i(11): complex.28: Dissolution of these :: -

17y perchlorato complexes in-water -

acement of the:coordinated perchlorate group by. .

) plcxes_of the form {Co(4 11- d:eneN.;)(HgO)z}“j._

He afnpic of Cr(bpy)f"' was also suppiled 10 us by Pro—" :
dicott “and’ the Ru(IH) complexes by ‘Professor I.. N 3

1s ‘of Co(Il) with ¢,,— and Other Reducing Radi- - -

Kinetics. The reaction rate constants. for the: various . -
Co(IT) macrocyclic- compiexes (as their perchlorate salts)
‘€aq" Were detérmined, in the prcscncc of 1M tert-

yutyl “alcohol ‘as an OH radical scavenger,>® from. the

pséudo-first-order’ decay of eaq~ monitored at 700 and 500

L From_thc.depcndence of these rate constants on the

substrate-concentration (1.25-2.50 X 107% M), the values

of k(Co(H) + eaq“) were calculated .and dre recorded: in
Table I. Decays were monitored over three-four half-lives.

‘No reaction was observed between the Co(II) complexes.
of 4;11:dieneN, and 4,14-dieneNy w1th the reducing radi-:
ls CO;~ and (CH3)2COH by monitoring the wavelengths ~
at-which the Co(l) species absorb. (see following section). -
unplymg that k < 107 M~! sec™! for these processes. Hows:
‘and. (CH3)>COH do. reduce - Co''(1,3,8,10-
traeneNy) with rate constantsof 4.7 X 10% and 5.5 X 108
M- Vsec™!, respectively. These latter experiments were con- - . "
ucted’ w1th Ar-purged solutions containing 1 X 1074 M -~
Co(IT)‘and 0.1' M HCOy~ at pH 6.5 or 1 X 1073 M Co(1I)
and:2M 2-propar|ol at'pH 1.25 and 6.5. Under these condi- .
ons, ‘and " (CH3)>COH . constitute. approximately
-half of. thc total reducmg cqulvafents in neutrai solutlon.

L COs™

: 'the reaction: of  e,q™ -

“o1 shown'in’ Figure 1. This spectrum, with bands at 630 (¢
" 9100 M em ), 450 (1060), 330 (3230), and 290 (3675) -

. nm, I8 mdependent of pH from 3.5 to 10, Vasilevskis and

i _0150n‘3 have 1nvest1gated the electrochemical reduction of

*'this' Co(I1). oomplex in CH;CN and report that the resul-
tant ‘Co(T) species: has'a’ spectrum with maxima at 679 (¢
15950 M~ cm™!); 450° (~1100); 350 (3300), 307 (3600) :

“Coll Coll(1, 3,8, 10-.'
_ti_ieneN4) : _tetraeneN‘,)

AT 10 34X 10, 49 X 101
: L. L
St 55 % 10°

ﬂDete:mme { in the p;esence of (1 25--2.5) X 1075 M Co(IE) sub-
strate; 1 M rerr-butyl alcohol, 1 m} phosphate or borate buffer in
At-purged solutions. Value for Coll(1,3,8,10-tetraeneN ) was deter- -

.. mined at pH 6.5 only. 2 Determined in the presence of 1 X M
" CofIl) substrate, 0.1 M HCO,™ in Ar-purged solutions. ¢Determined
- in the presence of 1 X 1071 Co(I1) substrate;, 2 M 2-propanol; "
B _perchioric ak:id_, or 1 mM phosphate buffer in Ar-purged solutions,

-"these rad;cals also reduce the correspondmg Co(III} com-
_ plexes to Co(I1).26 -

Transient Spectra. The raprd reaction of eaq w1th the

S macrocychc compiexes assured that transient species would
'tlon Wlth cobaltous acetate

y prepared from 4, 14 dleneN4_ '
waving been obtained by the addition of

* be fully-formed <0.5 psec after thé pulse and their absorp--
tion: spectra determined before any apprcc1able decay had
" gecurred. The transient species were observed in Ar-purged
- solutions. containing'5 X 107* M Co(11); 1 M tert-butyl al-
“cohol, 4nd I'mM buffer. All spectra were corrected for the
" depletion of the substrate and for the absorptioh of the radl—_ o

cal derived from tert-butyl alcohol,?® whenever necessary..
. The transient optical absorption spectrum obtained from
swith Col'(4,11-dieneN4) at pH 7 is

and 245: -(2950) nm. Desplte ‘the: small differences in Apax

-and ¢ between' the two solvents, therg is little doubt that the
-aetion of €4~ on' the: Co(IT)’ complex- generates the Co(l)
" species. The transient spectrum obtained from the reaction

‘of €557 with Co''(4,14-dieneN,) at pH 7 (Figure 2) shows

“five bands of similar intensities {e 2500-3500 M~! cm™!) in

“the uv-visible. ‘region. The. spectrum of the Col(4 14-d1-' o
- ;'cneN4) species has not been previously reported: el

“The: reaction: of e,q~ with Co'1(1,3,8 EO-tetraeneN4) at’

pH 6:5 ‘produced a transient spectrum: with a broad. Band
" centered at 700 nm (¢ 8400 M~! cm~') shown in Figure 3:

A similar spectrum has been obtained by Endicott upon: the
electrochemical reduction of this Co(IT). complex in aque;

. ous solution.” The reduction of this complex by CO.
‘pH 6.5.4nd by: (CH3)2C0H at pH 1.25 and 6.5 pro _
~the same fransient. spectra as from. ey~ Slightly. higher

values, (9500510200 M1 cm™!) were observed but:t

:'dxfferences are deemed to be within the experimerital errors:

Reactlons of Co(I) Wlﬂ'l Aclds. Both C01(4 ll-dre

netics producmg a résidual absorptlon w1th ban
"and 320 nm (Figures. I and 2). Plots of the fir

constants for the decay of Col(4,1 l-dleneN4) and §

.dlencN4) momtored at-630 ‘and 590 nm; respecix

function of pH are shown in Figure 4:and i
Figure 2. The Ar-purged tert-butyl alcohot

' contained 5 X104 M Co(Il) at pH >4.2:a
- H(

Co(IT) at pH <4.0 with 1-mM buffer or )
strengths of the solutmns weére not spec:fica ly

- but were low and in'a ‘narrow range; x = 0.002:0.004
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Figure 1. Absorption spectra of Co'(4,11-dieneNy) generated from the

reaction of e,q~ with Co{Il} in I M rert-butyl alcohol and 1 mM phos-

phate buffer at pH 7, O. Absorption spectrum resulting from the decay
of Co'(4,11-dieneNy) at pH 7 (®) 20 sec after the pulse.
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Figure 2. Absorption spectrum of Col(4,14-dierieMN,) generated from
the reaction of eqq” with Co(II) in | M rers-butyl alcohol and 1 mM
phosphate buffer at pH 7, ©.. Absorption spectrum resulting from the
decay of Col(4,14-dieneN,) at pH 7 (@) 20 sec after-the pulse. Insert:
Dependence upon pH of the first-order rate constant for the decay of
Col{4,14-dieneNy) in deoxygenated solutions containing 1 M fert-
butyl alcohol in the presence of t mAf phosphate or tetraborate buffer,
&; in the absence of buffer, A.

Several features of the decay rate constants should be
noted: (1) there is nearly a 1000-fold variation of k over the
pH range 3.5-10; (2) at pH <4.2 and constant ionic
strength, the value of k increases rapidly upon addition of
.- deid; (3) in solution buffered with phosphate, an inflection
" ‘point. at pH ~7.2 is observed. The results suggest that the

Co!(dieneNy) species react with H* in acidic solution and .

- with the conjugate forms of the phosphate buffer (H,PO,~
and-HPOR2~; pK; = 7.2) in neutral solution. No effect of

©.. botate buffer was observed at pH 8.5-10.

#The first-order rate constants were found. to be lmeariy
1dependent upon [H"'] and [phosphate] as well-as the con-

sqy
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mM phosphate bufferat
psec after the pulse, G.-A

Figure 4. Dependence upon pH of thé first-order rate constant-for the
decay of Col(4,11-dieneN4): in the presence ‘of 1:mM-phosphate or =

tetraborate buffer, O; in‘the absence of buffer with-dcidity controlled:. -
by HCIO,, ®. Insert: Dependence of ﬁrst-order ‘rate constant Ol o
(4,07 (2) snd [HPOL] (W).. SR

centratlon of other proton donors such ag CH3C02H and
NH,*. The data for Col(4;11-dieneN;) are- ‘shown in- Fig-
ures 4 and 5. From the slopes of ithese: plots; the second~
order rate constants for the reaction of Co(I): with various
proton ‘donors; HA; were evaluated (Table ). The: values
for H>O were détermined- at: pH 19-10 in: the absénce 'of
buffer but at low radiation doses’so as'to maintainthe pH
constant.. With one"exception,:the experiments: were’ per-
formed* at ‘pH .values:well ‘below.‘the pK;, of  the acids in
order to ensure the dbsefice: of the: con_;ugate ‘base: The pH
of the ‘acetic acid solution: was 4 850 that [CH3C02H} =
[CH3CO,7].  For all these: “experiments;” condltlons were
chosen'such that all g™ réacted: w1th the: Co(II) substrate
and none with’ HA: Furthermore, the eoncentratlons of HA
and’ H*'were: established such that k(Co(I) + HA) =
20k(Co(ly + H*).'Id all cases; the decay of Co(l) was not
affected by the presence of rerit utyl alcohol:

The: Col(1;3;8 IO-tetraeneN4) spécies produced in tert—
butyl alcohol solutlon at’ pH 6. 5 decayed with 112~ 50—




s for the Reaction of Co(I) with Proton Dq_r;dr's_._.'_:

89

. pHof

K(Co(l) + HA, M~"sec™1@ -

- col(g it Col(1,3,8,10-

L Cold, 14
TeXpt i dIeneNq) SETLE e dieneNLY tetraeneN,)
Variable -1 REA D L 1.2 X 1050 1.6 X 10%¢
S48 T U 1 T - SR . 6.2 X 10%e
550 T 9.8IX1107 S 30% 107 —
7.0 68X 10! - —
100 UL X108 — —
910, '48')(;»10 : 20)( 10‘ -

13 terts Tzutyl alcohol 1omc strength 0 001 M

concentration of products formed from the disappearance of

the alcohol radicals. It would appear that the secondary ab-. o

some of it with scavengers associated w1th the: zert butyl al‘ :

‘cohol. Indeed, the decay kinetics of the' secondary absorp»-

tion in the presence of ferf-butyl alcohol at pH'S (k. ='3.7.7

X 10 sec") are virtually identical with those of the initial

Co(I) species generated from (CH;3),COH in the presence-.

of 2-propanol at pH 5 (k = 4.5 X 10! sec™!). The decay of

the secondary absorption revealed a residual absorption..
that was recorded ~20 sec after the pulse. The further sta- E:

bility of this final absorption (Figure 3) was not examined.

The second-order rate constants for the reaction of Co'(1,3,8, 10-' o
tetraeneN4) with proton donors were determmed therefore,
in the presence of 2-propanol; k(Co(1) + H*) = 1.6 X 105 .
M~ sec™! at pH 0.25-1.25 and k(Co(I) + CH;CO,H) =
sec”! at pH 4.8. The normal decay of the’

6.2 X 104 M1
Co(I) species. was also affected by the presence of phos-
phate buffer and NH,* but the values of &, which are <10%
M~ sec™!, could not be determined, because of interfer:
ence by reaction with H*. Decay kineties of Co¥(1,3,8,10-
tetraeneN4) in basic solution were not evaluated because of
the instability of the Co(II) substrate at pH >7.. ;

- With Organic Electron Acceptors. The rate constants for
electron transfer. from Co!(4,11-dieneNy) and Co'(1,3,8,10-
tetraeneNy) to various organic acceptors, A, were deter-
mined by monitoring the decay of the Co(I) band, the dis-
appearance of A, or the formation of the corresponding re-
duced species, -A~ or -AH, at a suitable wavelength.’® Be-
cause of the high reactivity of the acceptors with e,q~ to
form +A~-or -AH, the concentrations of Co(Il) (1 X 10‘
M) and A (<5 X 1077 M) were chosen such that no more

- than 5% of: emI would be lost through direct reaction with

/A The experiments were carried out at pH 9.2 for Col(4,11-

: dxeneN4) and: pH 6.5 for Co'(1,3,8,10-tetraeneMN,) in order
" to.minimize the reaction of Co(1) with H*, Solutions con-
.7, tained:I mM buffer and I M rert- butyl alcohol. The values
- of k fcr some organic acceptors are given in Table I with
.- all “but one’ aceeptor. (3- -benzoylpyridine} showing 100%
- -electron transfer. The spectrum of the -A~ species from the
e reactlon of rnenaqumone w;th Co'(4 11 dleneN4) is shown'

jinad i Ar-purged solutions at the )\max for the Co(I) species; 85% 10- 3M CO(II), L M tert-butyl alcohol, pH 3.5—-4.2, ionic
igthi = 0.075 . ¢ 1 X 10-%M Co(il), 2 M 2-propanol, pH 0.25—1 25, fonic strength = 0.06-0.6 M. 92 X 10" M Colll), [CH,CO,H] =
[CH COH] "[CH CO,]'=(2-10) % 1073 M, lMtert—butyl alcohol ionic strength -0.01°0.05M.€2 X 1073 M Co(ll), {CH,CO.H] =
JCHLCO; ] =1{2=10) X 10-3 M, 2 M 2-propanol, jonic strength = 0.0120.05 M F57% 104 # Co(ID), [H,PO,~} = (1-10) X 10~ 3M 1M rert-
butyl alcoliol; iotic strength = 0.005-0.01 M. 215 X 103 Co(Il, [NH;#T:=
jik 015—0 1M hS %10 ‘MCO(II) {HPO = (2 10) X 10 2Mr lMtertbutyl

& 100 p.sec to reveal a'second transient absorptlon (Figure 3y .
. _v1rtualiy identical with the initial transient but about 16%
_less intense. This secondary absorption was.not observed -

- when the Co(I) species was generated by CO5~ at. pH 6.50r
(CH3),COH radicals at pH 1 and 6.5, mdwatmg that the .
small loss of the-original Co(I) absorption.is dependent on -
the presence of tert-butyl alcohol. The rate of the decay of = .
the Co(I) initially produced was mdependent of [Co(ID], .
[buffer], and pH (3.5-6.5) but dependent ‘on’the radiation. "+

dose and thus on [Co(I)], [«CH2C(CH3),0H}, and/or 'the -

. Flgure 5 Dependence of log & (Co' + HA) fcr Col(4,11- dteneN4) on

- dashed lines represent slopes of 0 and —1. Insert: Dependence-of first-

" terminied by comparing the guantitative absorbance due to

10y % 102 M1 Mterr-butyl alcohel, ionic strength =
_cohol jonic strength = 0.06~0.3 M. 5 X 10~* M Co(II),

: “log K (Cols HA).

C

: ] o 1 i ’
‘*2_ 8] 2 4 3] 8 10 12 14 16

the pK; values of HA; experimental points taken from Table H, The

order. rate comstant for the decay of Col(4, ll-dleneN4) on
[CH3C02H] (El) and {NHH} (m).

in F]gure 6a and 1t agrees well with the previously pﬂbhshed
spectrum.?® -
‘The extent of electron transfer from Co(I) to A was de-

-A™ formed from the reaction of Co(I) with A with that ob-
tained directly. from the reaction of ey~ with A. Consid- " .
ering the.very rapid latter reaction to be 100% efficient in-
generating ~A~,%® the efficiency of the electron transfer re-
actions of Co(I) with A could be determined. In Figure 6ba’.
‘plot is made of the efficiency of electron transfer from Col- -
(4,11- dleneN4) as a function of the standard reduction po-'
tential of A'at pH' 9.2, E;.® It cari be seen that for.accep-
tors with E, values more negative than —0.88 V, no'elec:
tron transfer was observed; for En, more positive than
~0.85 V, transfer was quantltatlve. The apparent oxidation
potential for Co'(4,11-dieneNy) is evaluated from the mi
point of this ““titration” curve to be +0.86 V.- :
In the same way, transfer from Co’(l,3,8,10 tetraen
was liantitative to acceptors with Egvalues at:pH
more positive than —0.24 V; for acceptors: with E values
more negative than —0.35, no transfer was observed: Fr.
this we estimate the apparent oxidation potential of Co'(1:3,8,10-
tetraeneN4) in aqueous solution to be ca. +0 28
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plex (5 X 107* M) at pH 9.2 in the presence of (0.1-2)

- oxidant and not with H>O or. H*. Co(l). decayed vidg

' stants for the reactlon of the Co(I) specr

~1 X 10% M~ secT -.._As far. as could be seen, the Co(I) +
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Figure 6. (A) Optical absorption specttum of the semiguinone radi¢a
anion of menaquinone (-A~) produced from the reaction.of Col(4;F7::
dieneN4) with menaquinone (5 X 107* M) in the presence of 1:M ferts: .
butyl alcohol and 1 mA tetraborate at pH 9.2. (B) Dependérice of the =
efficiency of electron transfer (cxprcssed as percent) in thé reaction of
Co'(4,11-dieneN,) with organic electron acceptors, as a function of th
standard reduction potential of the aceeptors at pH %:27in 1 M fer
butyl alcohol and 1 mM tetraborate: Acceptors nsed: 1; mendguinon
2, 9,10-anthraquinone-2-sulfondte; 3, eosin'Y; 4, ﬂuorenone, 5. flay
rescein; 6, 3- benzoylpyr;dme, 7, dlmcthyk maleate; 8, benzophenon
acetophenone. :

lutions contammg 1AM
thenwse indicated.:bDeter-
taining 1M tert-butyl
xidant}.= (1.25-5.0) X

X 10724 CoH(4 11-dieneN,),
0.016—0,028 M: 5

apparent ox1dat10n potentlais for the Co(l) specws dlffe

from the thermodynamic potential 3
With Metal Complexes. Co'(4,11- dieneN4) was gencra

ed by the ¢,q~ reduction of the correspcmdmg Co(II) com O] = (7.5-95)

Valie fcr COI(4 14 dieneNq}
%1030, 0. alcohol pres- -
-.[CH 1] = (2 -5)

10~3 M metal complex oxidants, 1 M teri-butyl al ho
and 1 mM tetraborate buffer in Ar-purged solutions.:
perlments were performed as rapidly as poss1ble in order 1
ensure that the M(III) complexes were in the mildly: al; S
line solution for <30 min. Under these conditions,. <70% 0 1T = ! ectrum of a fi nal "'pro'duct
Caq reacted with Co(Il) with the remainder reactin ti
rcctly with the. M(III) complexes. However low: “dose:

via, feaction. with. caq_ was not mgmﬁcant ‘The corid'tmn
chosen also ensured that the Co(l) species reacted wit ‘th

order, kmetlcs with the rate constant dcpendent on: the con:

Co(1), 1 M tert-butyl alcohol 1 mM buffer,
X 10~5 M M(III),

L c numbei-é 1'n parentheses représent
With CH;l, 02, and NZO. The---.secon

(number of radicals formed per
of: energy bsorbed by the soivent) By the use of se-
ted. scaveng

prin lpal'reactant in the soEutmn Thus in the
'pres nce ‘of tert-butyl alcohol; the OH radicals are effec-
. tively scavenged: OH # (CH3)3COH. - -CH,C(CH;),0H
: RO =52 X 103 M=} sec™1);%0 the resultant radical
1073 M. Co(II) 1. M rerts butyI alcohol " is relatively: inert and its .weak optical absorption2® below
Under these ccndatmns all e,q™ reacted wlth-Co(II) S 280 nmca easﬂy be taken into account when transient ab-
In the presence of 0, the: ‘Co(1)species decayed with.k ' sorption spectra are determined. In N3O-saturated solution,
: €aaT s_ef'fimently scavenged: €aq- + N2O.— OH + N, +

O, reaction. dld not rcgenerate Ihe spectrum of thc orlgmal- - OH™(k = 8.7 X 10 M~% sec™");*! in acidic:solution Caq”

Ar—purgcd solutmn contammg (2-_
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: radlcals €O,

HCOz -**COZ ¥ HZO /H2
2. 5 X. 109/2 5 X 108 -1 sec—‘)4042

=+ (CH3)2CHOH s (CH3)2COH + HZOIHz
._1 3 X109/5.0 X 107 M~ sec—1)4042

on:of;: the Co(II) complexes with ezq” occurs at or
‘near the diffusion-controlled limit. The values of k for the
: all(dlcncN4) ‘complexes are independent of pH (6-10}
iggesting that the complexcs do not undergo protonation--
' eprotonatmn redctions in that pI—I range; acid-base behav-
jor.can affect the value of k and is seen in the reactions of
the: correspondmg Co(III) complexes with e,q™.3¢ Because
.. “of the sensitivity of Co'!(1,3,8,10-tetraeneN} towards base,
“ all experiments with that complex were performed at pH
. <7. The reaction of e,q~ with Co(II} generates the spec-
. trum of Co(I) directly with no evidence for the initial for-
.- mation_of s Co(II)-coordinated ligand radical species at a
- fime ' resolution of ~0.1 usec. However, neither of the
‘Co''(dieneN,) complexes was reduced by CO;~ or
(CH3)2COH suggesting either that the redox potentials of
the systems are not favorable or that the reactions possess
" mechanistic barriers that render an otherwise spontaneous
reaction too slow to compete with other bimolecular radlcal
decay steps.
Proton Transfer Reactions. Unlike their known stablhty
in dry CH;CN solution,’3-30 these Co(I) species are unsta-
-ble.in aquecus solution. Their reactivity patterns indicate
their involvement in proton transfer processes. Similar be-
havior has been observed for Col{CN)s*~ (k' = 2 X 10
M~ sec™! for reaction with H,0)*? and the reactivity of
Co’(4 11-dieneNy4)!3 and various Co(I) complexes contain-
ing tétradentate (nonmacrocychc) ligands!® with ‘water has
also been noted. Vitamin Byys® reacts with H* the CO(IH)—

hydrido complex commonly being proposed asan interme-

* diate species in the formation of H». Stable hydridocobalox-
imes have, however, been isolated as solids*® as has the
Co"‘(CN)SI-F‘"“ complex.** Therefore, it i§ consistent with
these previous studies to suggest that the proton transfer re-
actions reported here occur via dll"cct addlthI‘l of H* to the
CO(I) center :

Co(I) + H+ -; [Co(I)_H+] o [Co(IT)-H] <
[Co(III)—H‘}

In support of this propomtlon it shouid bé noted that the
complexes Nil(4,11-dieneNy), Nil(aneNy), and Cu'(4,11-
dieneN,) also react with H* .6 The rates of proton transfer
for these complexes are several orders of magnitude lower
than those for the Co'(dieneN,) complexes and of the same
order as Col(1.3,8,10-tetraencNy). The fact that proton
transfer takes place to a complex containing a fully saturat-
ed macrocyclic ligand rules out proton attack on the imine
functional groups as a requirement for this reaction. The
spectra resulting from the reaction of Co'(4,11-dieneNa)
with phosphate at pH 7.0 or water at pH 10.0 were identi-
cal and were stable for at least 20 sec following the pulse. -

- Eigen has shown*” that a relationship exists between the
rate constant for-proton transfer and the difference in the
pK of the donor acid and the acceptor base. When pK, <

pKy such that ApK (pK, — pKp) < 0, “normally behaved” .

bases undergo diffusion-controlled reactions with & being
independent of ApK. When ApK > 0, a plot of log & vs.
ApK gives-a slope of —1 with the rate constant decreasing
with increasing values of ApK. In the vicinity of ApK ~ 0,2

H* o0 (k =23% 1010;“_
and- :

'sembles the original Co(II) substrate (Figure 3) which may

‘erful reducmg agents, reacting rapidly with a wide range of
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sharp transition from a slope of zero to —1 is theoretically
predicted. In practice, the limiting slopes are seldom
achicved and the transition point usually shows decided cur-
vature. ' . :
The data in Table I for Co'(4,11-dieneNy) are piotted in
the form of log k vs. pK. in Figure 5, inasmuch as pKy, for
Co(T) is not known, The values of & were not derived at
constant . ionic strengths. However, inasmuch as the rate
constant. is. a relatively weak function of ionic strength
under these conditions,*® we feel that the narrow range of
ionic strengths of the solutions did not introduce any error
of magnitude into the plot shown in Figure 5. The values of
u (and especially p!/?) did not vary greatly for the individu-.
al donors used and did not significantly affect the linearity
of the plots of k vs. [HA]. Thus, despite the limited number
of points and the uncertainties involved, the trend depicted
in Figure 5 supports our contention that the Co(I) species -
reacts with these acids via proton transfer reactions. Devia-
tions from ideality, also seen in even simpler systems,*” have
been reconciléd in terms of the asymmetry of charge, mo-
lecular structure and steric restriction, hydrogen bonding,
and electron distribution in the donors and acceptors. From
the general region: of the transition shown in Figure 5, we
estimate - pK13 for Co‘(4 11 dieneN,) to be in the range
6-10.

Thelimited data fortheother Co(I) spcc:esshows Col(4,14-
dieneNy) to be only shghtly less reactive than its isomer but
Col(1,3,8,10-tetraeneN,) is 3-4 orders of magnitude less
reactive than the diene complexes. This implies that the
value of & for the reaction of Co'(1,3,8,10-tetracneN,) with
H>O0 may be of the order of 103 M ~! sec™! (or less) and so
the Co(I) species may show modest stability in alkaline so-
lution®” barring any hydrolysis of the ligand. At pH 6.5,
however, the residual absorption 20 sec after the pulsé re-

be the end product of the reaction of Co!(1,3.8,10-tetra-
encN4) with proton donors via some hydrido intermediate.
Electron Transfer Reactions, The Co(l) species are pow-

electron acceptors: The apparent oxidation. potentials of
these spccws in ‘aqueous solution can be compared with ex-
isting data in the literature desplte the nonthermodynamic
character of the data presented in this paper and the non-
aqueous’ solverit system employed by other ‘workers. £ 172
values for Co'(4,11-dieneN,) and Co'(1;3,8,10- tetraencN4)

in' CH3CN have been extrapolated to the aqueous system,
and; through dn estimation of CH;CH-H>0 junction poterni-.
tial, on valiaes of +0.7 and +0.48 V- respectively, have
been obtained.*® Considering all the factors involved, the -
similarity of both sets of data is, perhaps; remarkable and
the dieneNy complex is established as the stronger reducing
agent. Even in their limited form, these data demonstrate -
the profound effect of the degree and position of unsaturd: -
tion of the macmcychc ligand on the redox potentlal of the -
complex.

The Co(I) species react rapidly with metal complex
dants with rate constants that cover a range of three orders:
of magnitude (10%-10° M~ sec!). Values of k < 105
sec™’ cannot be determined by the pulse technique d
the high- concentration of oxidant required to ‘sca ng
Co(I); the trivalent metal complexes used themselves ré;
very rapidly with e,q~ (k = 4-9 X 1070 M1 gec™1).17:3¢

transfer reactions of the oxidants employed are well est:
lished to be of that type.5%3! Because of the lack of any.
formation concerning the self-exchange rate consta 0
the Co(l) species and the lack of certainty’ 1
values of their redox patentials in" agueous soluti
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made no attempt to fit’ the data in Table HI to the Marcus
relationship in a quantitative manner. 52

However, certain trends aré apparent from the data If

one assumes that the electrostatic effects for Co'(4,11-di

eneNy) and Col(1,3,8,10-tetraeneNy) are similar, then-the .
relative rate constants for their reactions will be: dependent'- :
upon their relative reorganizational energies and- ‘redox ipo-

tentials. In reaction with. Cr(bpy)s*>* and Co(bpy)33+
rate constants for Co'(1,3,8,10- tetraeneN4) are' pprox1-.

differences in k' shown by the two Co(I) spemes .-Because ‘of :'_ 8 g
- “spectra of the orlgmal ‘Co(IT) species; it
v 'reactlon proceeds vxa the eoordma

" the lower: reducmg ability of - the Col(tetraeneN4) specles
- its reactivity would: be expected to be ' %
© Col(dienieNy) by approximately two or
the ‘self-exchange ‘rate constants of .

. . Spex :
*equal. From the'very limited data it appears that the self-
. exchange rate constant for Col(4 li-dleneN4) would be an '
order of magnitude or so greater than that of Co!{1,3,8,10- -
tetraeneNy) if the free energy correlation holds for these resi
actions. Indeed, Endicott has concluded®! that this correla:
tion does not hold true for electron. transfer reactions of "
. Co(IlT) complexes - containing. these ‘macrocyclic: hgands'.'._

. and that the self-exchange rate constant for the [Co(4,11-
dleneN4)(OH2)2]3+ 2+ couple is-about seven ordersof mag-" . : N
[Co(1,3,8;10-tetracnie: " - Co(1II) which is then’ itself reduced by
Co(II) ﬁnal product No evndence has bee

nitude . Jower than ‘that. of

N HOH,),]3+2*, Finally, it should be mentioned that the .
- Cul(4,11- dleneN4) complex, the redox potential of which'is "
. In"our: experlments, the rapid reaction of Co(D)
- N3O would: depleté the supply of Co(l) prohibiting
" ther loss of Co(III). The résidual spectrum aft
cof Co(I) did 10t resemble the Co(II) substr

similar. to that of Co'(1,3,8,10-tetraeneNy), undergoes elec-
tron transfer to the metal complex oxidants with rates simi-

Iar to those of the latter. comiplex; Nil(4,11- dteneNa) and :
Ni(aneN,) tend to parallel Co'{4 11 dleneN4) in’ both;_--

rates and redox properties.6:

The values of & for Coi(4 11 d1eneN4) in Table III mea- _': '

sured at low and constant ionic strength at pH 9.2, provide
some insight into the details of thése electron transfer reac-’

tions. For Co(en)s3* and Co(NH3)e** (reduction potentials
.. of =0.30° and +0.10 V3% respectlvely) the rate constants ..
" “are virtually identical but, assuming the general validity of -
" the Marcus relationship, can’ be attributed to the compen- :
sating effects of ' higher' reducibility but lower exchange.
* " reactivity’% shown by Co{NHj3)¢**. The Co(III)~macrocy-
" clic' complexes, which have very similar redox potentials®>
and as'+1 charged species will have a different electrostatic - = 1

o be viewed as anomolous at the present time. -

: - 'not generate free 02 radicals buf the
~“gpecies 'do.%¢: In contrast, Séellers and:S
_that Coaq*' + Oy generates 057505

o 2(30(1) +: N20 e 2Co(II) +Na. .
- been proposed to- occur VIa the smlp

~ cott has : indicated;’

w1th 1ts htgh reducﬂnhty and exchange reactlvny, can oniy _

- Other Reactions. The reaction of Oz thh elE three Co(I) _

.specnes is very rapid. Cobalt complexes can behave as oxy= | -

en’carriers®” ‘and. the reaction of Co(I) with O3 can be '

I-__;'. )

Pratt and co-workers®? have showi
1dly wzth a number of Co(I) compl

- ration of Co(III) alkyi complexes

the reactxon of v1tamm Blzs

stant for. the reaction.o
about four ordeérs of 1

effect “in_their reaction- with the +1- charged reduetants;-___ L C

-~ compared to the other Co(III) complexes, show reactivity
-t of the same- ‘magnitude as CO(BB)33+ and Co(NH;)ﬁ
- haps the anomalous variations®! in the Marcus

-, tional -parameter are in effect. here.. Ru_(NH3)6
- has-a reduction. potent1a1 (+0 05 V)57 simi

" er,® reacts at a rate that is abou

. faster; the Marcus. ‘correlation wo

“orders of magm
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