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Heat Transfer and the Killing of
Bacteria in Thermal Ster:llzatlon_
of Meat Roll

CHIA PING WANG ARI BRYNJOLFSSON
ABRSTRACT Jl(xn) = Bessel function of the first kind of order
one .,
Exact relation has been cbtained between k = Reaction rate constant in s~! for inactiva-
temperature in every point of a meat roll and the tion of a microorganism.
time. The theoretical results so ohbtained were N = The number of bacteria survived at time %.
compatred with measurement. This relation was then dN = Infinitesimal change in WN.
used to determine the "integral" survival curve for Ng = Initial value of N.
Ci. botulinum spores as a function of time in R = The universal gas comstant in J.mol™l.
different parts in the rell, For sterilization at T = Temperature in Kelvin.
121°C of a very long meat roll, with a 5 cm radius, Ty = Initial temperature in Kelvia of the
it is found that a heating time of zbout 4 hours entire meat.
is needed in order to reduce the survival fraction T, = Heating temperature in Kelvin outside the
of Cl. botulinum spores te l0T!2. TFor a roll of meat roll.
the same diameter, but of a length equal to one- T(t) = Temperature in Kelvin at any arbitrary
half of the diameter, the required heating time point of the meat roll as a function of
is reduced to about 90 minutes (37% of 4 hours). time,
The thermal diffusivity for the beef roll found X, =a ap = Roots of Eq. (10).
from this stady is about 1.3 x 10 =3 T , the z = The z value in °C,
thermal conductivity, 0.4 watt M™} °c™1, and the oy = xp/a = Roots of Eq. (10)/radius of the
effective surface resistance number (or conduction cylinder.
Nusselt number or Biot number) about 7. [ = Thickness of the gas (air) film adhered
gas .
onto the skin of the meat roll in cm,
NOMENCLATHURE [3 = Thermal diffusivity of meat in cm 's-
A = Ther?al conductivity of meat in J°s -cm -1
a = Radius of the meat roll in cm.
c = Heat capacity in J.g‘l. hgas = Thermal conductivity of the heating gas
D = Decimal reduction time in s. (air) ogutside_the meat roll in
Ea = Arrhenius activation energy in J st em™ T,
kcal'mol™" for inactivating a unit or v = Effective conduction Nusselt number or
a molecule that is essential for the Biot pumber.
survival of a bacterium, p = Demsity of meat in g cm 3.
f, = Time required for product to traverse 6 =T = T,
one log cycle of temperature. 04 = Ty - T,

J,(*n)= Besgsel function of the first kind of
order zero.



MATHEMATICAL INTRODUCTION FOR THE EVALUATION OF THE
SURVIVAL FRACTION

It is well known (1) that for quite a large class
of microorganisms the logarithmic survival fraction,
tn N/N,, for thermal sterilization at a specific
temperature T is a linear function of the steriliza-
tion time t. This relation is explained by laws of
thermodynamics which show that the frequency by
which a subsystem {an atom or a molecule) has an
energy E_ above the average thermodynamic emergy 1is
proportional to the exponential function exp
(-E,/RT), the Boltzmann factor, where E, is the
Arrhenius activation energy, T the temperature in °X,
and R, the universal gas ceonstant. That is:

dN = -kNdt = -C.[exp(-E_/RT)]"N"dt (1)

In Eq. (1) we think of Ea as the activation
energy for inactivating a unit or a molecule (for
instance a DNA "molecule") that is essential for
survival of the bacterium. Each time an essential
unit is inactivated, a bacterium is killed. The
number dN of bacteria killed ia z short time dt is
then proportiomal to the total number N of bacteria
and to the Boltzmann factor exp (—EafRT). C is a
constant and is a measure of the absolute frequency
of energy tramsfer E_.

It follows from the reaction rate equation (1)
by integration that:

on % = ¢ [C exp (-E,/RT)dt (2)
L]

If in Eq. (2} T is constant in time then:

2a N = —[C exo(-E,/RT) ]t = -kt = - 2,303 £/D (3)
N

or N = N, * exp(-kt) = N exp(~2.303 t/D)

o]

For a large number of microorganisms, the semi-
logarithmic plot of the survival fraction N/N

against t is not a straight line, but has a "Shoulder'.

In such a case, the rate constant k is time-dependent
even though the temperature is held constant. In

the following, we prove in two ways that the form of
Eq. (2) holds for any function F(T,t) on the right-
hand side of Eqs, (1) or (2).

Proof I.
If at constant temperature T,

aN _ .. .
o= CFELE N f1a)

then we have the "differential law" similar to
Eq. (1).

Hence, when T varies with t, we have, by inte-
grating Eq. (la),

(N/N,) = -C - fE F(T(t), t)dt (2a)

For those who prefer to take Eq. (la) as an
assumption rather than a fundamental law, we prove
Eq. (2a) without assuming Eq., {la} in Proof II below.

Proof II.

If at constant temperature T, the logarithmic
survival fraction is given by

n (N/Rg) = ~CrF(T,t) "¢t (1b)
then for a small time interval At at time t;, there
will be a mean effective temperature T; and a sur-
vival fraction NI/NO, such that

gn (N1/N,) = -C*F(T;, tp)-at

Similarly, for At at (tz, Tz) following the first
time interval At at t;, and so on,

in (NZ/NI) C'F(Tz, ty) At

in (N3/N2) -C'F(T3, t3)'ﬂt

n (Nn/Nn_l) = -C*F(T_, t )*At
Summing the above,
n

in (NB/NO) =-C+*% F(T
i=1

is ti)'At

Hence

o0
gn (N/N)) ="Lim C'p F(T;, ty)*at
' At>0 i=1

= -C fg F(T(t), t)dt (2a)
which is Eq. (2a).

Thus, we can use Eq. (2), or more generally
Eq. {(2a}), with perfect confidence in evaluating the
survival fraction N/N,.

From Eq. (2a), N/N_ can be accurately determined
if F(T,t) as a function of the temperature T and the
time t is found, and the temperature T(t) of the
specimen as a function of the time t is known.

In the following section, we show how the func-
tion T(t) for a long meat roll is derived from the
equations of heat transfer. The equations of heat
transfer are based on well-established physical
laws; and their solutions, though complicated and
lengthy, have been obtained for a great number of ~
cases by workers in the various fields (2,3). In
the following, we outline our mathematical solution
for the case of a long meat roll. As will be seen
below, the complicated situation of conductivity
discontinuity of the meat roll skin (the casing),
of the convective heating and of the radiation
exchange at the surface, can all be taken into
account by a combined single statement of the
boundary condition,



TEMPERATURE DISTRIBUTION IN A LONG MEAT ROLL
The heat conduction equation for an infinitely

long cylinder of radius a, is

2
3T L o (3L L 13T for 0 < <a (4)
r or

2
3t 3

where ¥ is the "thermal diffusivity”

A - Thermal conductivity {4a)
density - speecific heat

Initially the entire meat roll is at temperature
T.. Then suddenly the meat roll is exposed to the
temperature T, and the outside temperature is main-
tained at T, durlng the process. The temperature T
at any point ir the meat rell will change with time.
To simplify the equations, we will use a new
variable 6 where

6 =T~T {5)
Eq. (4) then becomes

30 - 220 4 1 30y (6)
3t arZ r ar

The initial value of § at any point of the meat
roll is:

6y =T, ~T

i o fOr t <0 {7}

At the boundary r = a, there will be in practice
an interfaece (layer) or transition layer im which
the temperature is changing from T, te the actual
temperature at the surface of the roll. At the sur—
face, the boundary condition of heat flowing into
the roll being equal to the heat flowing out from the
layer across the surface of the roll, leads to

38 _hag,
ar

for r = a (8)

where h = A gas, the conductivity of the gas (air),

8 gas

divided by the thickness of the gas (air) film, is the
coefficient of heat transfer due to gas film only.

Due to radiation at the surface, h actually would
be equal to A gas/§ gas plus some comstant (due to
radiation), Also, because of the skia (the casing)
of the rell, we have actually two transition layers
instead of one at the surface, the selid skin and
the gas film adhered onto it., Tt can be shown that
all these three factors can be combined into a single
effective coefficient in front of 6 in Eq. {8).
Henceforth, h/A of Eq. (8) will stand for this
effective coefficient.

Eq. (6) with boundary condition of the form of
Eq. (8}, i.e. —38 being proportional to 9, has been
ar
solved with the usual technique of the separation of

variables, Here we use Carslow and Jaeger's nota-
tions (2) when applicable. The solution takes the
form

ka2t
T @
n=1
where ao, = xp are roots of
xp tJy () = Rac I, Gy (10)
and
A= 20, Iy )
g2 (e + 32 (11)

In Eqs. (9), (10}, and (11), I, and Jl are
Bessel functions of orders zero and one respectively.

Hence, from Eqs. (5) and (7),

T - Ty = 2(Ty -Tg)*L' 1 .
n=l [ x 2
xy {Zny + 1]J1(xn)
v
-K @ 2t
.I0 (anr) v e n (12)
where
x, = aoy {13)
v o= a = effective conduction

-2

Nusselt number or
Biot number 14)

Had we considered only the gas film at the sur-
face, h in Eqs. (14) and (8) would be A aS/agaS, and
v of Eq. {14) would be the "conduction ﬁusselt number’
(3), or the "Biot number", which is to be distin-
guished from the "convection Nusselt nmumber", the
latter being equal h . a.

Agas
In our case, ( DJ is the combined effective coeffi-
cient of three*factors, the gas film, the solid skin,
and the surface radiation. But, it would be mean-—
ingful to express the combined effeet in terms of an
equivalent resistive film at the surface. Thus, the
combined constants L a of Eq. (i4) is the equivalent

or effective conduction Nusselt number or Biot
number.

In Eq. (12) there are thus two constants or
parameters, the thermal diffusivity x and the
effective Nusselt number v which relates to the com-
bined thermal resistance of the surface. They may
be determined sepsrately or found by fitting Eq. (12)
with measured values of T as a function of time.

We carried out a computer search for the ranges of
these two parameters, k and v, and found that the
thermal diffusivitg k lies gomewhere around 1.25 x
103 to 1.35 x 1077 em™ s'l, and the effective
Nusselt number v, around 6 to 8, for the beef rolls
processed in these experiments.

Fig. 1 is a computer plot of Eg, (12) as a func—
tion of time for r = 0, 0.1 a, 0.2 a ... 1l.0a, with
v=6, k= 1,35 x 10°3 em2 s"i, and 2 = 5 en.  The
heating and the initial temperatures are 121.1°C
and 21°C respectively.



Fig. 2 is a computer plot of the temperature
distribution within the rell for t =5, 10, 15 ....
240 minutes, i.e. the plot of Eq., (12) as a function
of r for t = 5, 10, 15 ... 240 minutes, again with
v==6, k=1,33x 1073 em? s'l, a=>5cm, and the
same heating and inftial temperatures. as Fig. 1.

CALCULATIONS OF Ea, C AND THE INTEGRAL BACTERIA
SURVIVAL FRACTION

We can now put our function T of Egq. (12) into
the "bacteria survival integral" of Egqs. (2) or
(2a) te calculate the survival fraction N/N, of the
bacterium. Ia this paper, we carried out the cal-
culations for Cl. botulinum spores for which we
assume the reaction rate constant Kk to be given by
the exponential function exp(-E,/RT) rather than
the general function F(T{t), t) which may represent
any empirical function or other theoretical function
such as Eyring's.

The calculations for other microorganisms will be
exactly the same.

The integrand of Eq. (2) after subsituting T from
Eq. (12) looks quite complicated. We have written
computer progrsms to carry out the computation.

But, before we could actually carry out the.cempu-
tation, the two constants C and E, in Eqs. (2) and
(1) have to be determined.

Determination of Ea from the z Value

We show in some details belew the relationship
between the z-value, the temperature T, and the
Arrhenius activation energy E; because there seems
to have been some misunderstanding expressed by
gsone of the reviewers about the functional relation-
ship of Eq. (1) and the equations (given belaow)
derived from it to express E, in terms of the
z-value,

As remarked in the first section, the reaction
rate equation, Eq. (1),

D= - ¢ fexp(-B/RD]"N (1

means that the temperature dependence of k is
through T in the exponential function exp(—Ea/RT}
only, where E; is a constant independent of T.
Otherwise, k will have to be expressed by the
general fundtion F(T(t), t) of Eq. (la).

Now for bacterium of number N at temperature Ty,
the reaction rate, from Eq. {1}, is

(8 = —co[exp(-E /RN (15)

Ty

Similarly, the reaction rate at temperature T2
for the same bacterium of the same number N, is

dN
(EE‘ = —C'[exp(—Ea/RTz)]-N {i6)
T
2
Thus, from Eqs. (15) by (16)

{(dN/dt)
T

1 Ba 1 1
—_— T o ex -2 ¢ _1
(anfar), pl-g TR
E.T,-T
=ep (-2 F——1 - an
12
Now if we choose the temperature T, such that

the rate of inactivation is changed by a factor of
10 from that at Tl, then

dN/dt

(dn/ )T

=10 {18)
(ar/dt)_
T2

Equating'Eqs. (18) and (17} gives

. . T
=(2,n 10)*R TT, =(£n 10)-R T, T, (19)

1- 7T z

where, by definition, Tl - T, the temperature change
as specified, is the z-value.

E

a T

In other words, the values of the two slopes,
Egs. (15) and (16), at the two temperatures T and
T,, determine the unknown constant E, in these
equations, and is given in Eq. (19).

We note that Eq. (19), contrary to what one
reviewar remarked, by no means expressed the temper-—
ature dependence of Ea. The appearance of T.T, on
the right-hand side simply means that, if the
reaction rate eguation Eq. (1) is strictly true,
then there is a temperature dependence of the z-value
such that

T,T
2172 js a constant {20)
z

for any two temperatures T, and T, giving a rate
1 2
change by a factor of 10.

We could use, however, Eq. (20) to test whether
the Arrhenius activation energy E,, has only one
definite value for a particular bacterium.

The evaluation of E, 1s stralghtforward once the
z—value for a particular bacterium is known. For
C1. botulinum spores, representative values for z
are in the range z = 10.4 + 0.8°C at 121.1°C (4).
From Eq., (19), we have then for Cl. botulinum spores,

_ (an 10) * 394.26 * 384.26°1.987-107°
a 10.4

E

66.6 + 3.4 keal, mot "t (21)

Determination of the Constant C

For C. botulinum spores, we will, in this paper,
use for 12D, , the conservative Fo—value of 3.5 min
(4), which means that heating at 121.1°C for 17.5
sec. reduces the number N by one order of magnitude.
Thus, from Eq. (3}, for Cl. botulinum spores,



~while k is kept at 1.35 x 107 em? -+ 571

[Crexp(~E,/RT)] * 17.5 = £n 10

giving
c = 23026 85.076
17.5 * ¢
= 1.17 - 1036 g7 (22)

Calculation of the Bacteria Survival Integral and
the Integral Survival Curves

The calculation of the constant C is indeed very
simple as given in the above section. We note,
however, that C is a very large number, which, in
turn, means that the "Bacteria Survival Integral"
in Bq. (2) will give very small numbers. Certain
procedures have been taken to overcome the computer
underflow when computing this integral.

Fig. 3 is the plot of the "integral" survival
curves for CL. botulinum spores in an infinite
cylinder with radiua a = 5 cm. The calculations
are made using Eq. (2) in which T is given by
Eq. (12}, for r = 0, 0.la, 022a...l.0a, with
v =6 and ¢ = 1.35 x 103 em® g1, The heating and
the initial temperatures, as before, are 121.1°C
and 21.1°C, respectively.

It is seen from the survival curve for r = 0
that in order to reduce_the survival fraction of Cl.
botulinum spores to 107°“ of the initial spore
number , 3.5 hours heating is needed for a long beef
roll of radius = 5 em. This value of heating time
is ohtained with v = 6 and « = 1.35 x 10°3 en? *5~

Because there are spreads of the values of both
k and v for any meat roll, there will be correspond-
ing spreads of these integral survival curves.
Fig. 4 shows the spreads of the integral survival
surve for r = 0 due to the spreads of k and v.
Curve 1 is the_plot for r = 0, with v = 6 and
k= 1.35 x 1072 cm? -« 5_1, and curves 2 and 3 are
similar plots for r = 0 with the _same value of v
but « is_set equal to 1.45 x 10~ and 1.25 x 10~
cm“ * s, respectively. For N/N, = 10_12, the
spread is about 12 minutes either way.

The spread due to the variation of the value of
v can be seen by comparing curve 1 and curves 4 and
5. It is seen that when v is decreased from 6 to 4,
, the heat-
ing time for N/N, = 10712 jncreases from about
3-1/2 hrs to about %,

The spread of the values E, from 61.2 to 72
{see Eq. (21)) will also produce 3 spread of the
survival curves, For N/NO = 10_l , this spread is
about 8 minutes either way from the curve with
E, = 66.6kecal mol™L,

The above calculations and the values arrived at
are for a long meat roll. For a beef roll of the
same diameter (10 cm) but with the length of say
7.5 em, the required heating time for reduction
factor 12D, as estimated from the case of zero sur-
face heat resistance (no skin, no surface film and
no surface radiation), would be reduced to about
57%, and with the length of 5 c¢m, to about 377 of
the heating time valid for infinitely long rolls.
The exact calculations for this case are subjects
of our next investigation,

6

DISCUSSION

In the second section, by fitting the heating
surve (temperature wave) [or the center of the beef
roll, we found that the thermal diffusivity of the
roll is around 1.30 x 1073 em? + s~ , and v about
7.0. Cohen and Wierbicki (5) have measured the f
value for beef rolls in cans, i.e., the time required
for the time-temperature graph to traverse one log
cycle of temperature. From the measured f; value,
they deduced, disregarding surface resistance, that
the_thermal diffusivity x for beef is about 1.25 x
1077 em® &7+, in good agreement with our value from
fitting the heating curve of the beef roll.

In the preceding paper (6), we have found that
the specific heat of beef in unfrozen state with 60%
water content 1s 3.10 + 0.39 J° gLl - ocml ¢p,74 +
0.09 eal * g‘l - °C‘1). The range of the values of
thermal conductivity of beef with 60% water content
is about (4.0 + 0.6} 073 3 - gL ol oeptl g
reported by Sweat (7) who analyzed 110 thermal con—
ductivity data above freezing compiled by Kostaropoulos
(8) and Vachon et al (9). We can then deduce the
value of the k using Eq. {(4a).

-

€ =

3 2 -1

3 -
= 2:1077 196 - 1073 ? e

1 - 3.1

in good agreement with-the experimental value
reported above.

CONCLUSION

The equation for the “integral' survival frac-
tion of a microorganism is shown to be valid for
any form of temperature dependence of the reaction
(i.e. killing) rate constant, whether exponential or
not. When the survival curve at constant tempera-
ture and the time dependence of the temperature of
a meat sample are known, then the integral survival
fraction can be predicted for the sample from the
equation.

The thermal diffusivity ¢ of beef deduced here
from the heating curve of the beef roll and the
specific heat obtained in the preceding paper give
an overall consistency picture of the seemingly
unrelated thermal data of beef reported by the
various workers. Fog beef with 607 water content,
¢ is about 1.3 x 107° cm? s—l, and A, the thermal
conductivity, is about 0.4 watt * M~ °c=l. The
effective conduction Nusselt number v or Biot number
is about 7 for the beef rolls processed in these
experiments,
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