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_ ON THE ACCURACY OF POLYNOMIAL
FINITE ELEMENTS F OR CRACK PROBLEMS
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s ULS. A

the accuracy obtained with polynomial elements when the mesh patterns | 'are chosen on the basis of the i
element’s mterpolatlon functions. Numerical results are provided for: the accuracy of the total strain I
energy, the stress intensity factor, and the numerical condxtton of the global stiffness matrix. The stress

intensity factor is determiried to within 10 per cent : ccuracy usmg quadranc (lmear stram) trrangular

clements with only 138 degrees-of-freédom. * 77 T _ R B .

A square tensﬂe sheet wrth symmetnc edge cracks is analysed by the ﬁmte eIement method to demonstrate ' E

s L 2 INTRODUETION #

A great deal of effort has, gone mto the analysis of crack prob}ems by.the finite element
method. Very accurate results can be obtained using - hybnd ¢léments, power law elements
and ‘quarter point’ elements.’>” However, theoretical work’indicates that if the displacement
singularity is of the form R® thh 0<& <1 neat the ¢rack. tip then the mesh near the crack
tip can be desrgned to etﬁcrently mterpo}ate the pOWer form of the displacement field in the
energy norm.* FERERr oy e T s -

In this paper a square tenszle sheet W1th symmetrlc edge cracks I8 analysed by the finite
element method. The purpose of the analys;s is to demonstrate ‘the. -2ceuracy . obtained. when

element dtameters are chosen 50 that the error per eiement in the energy norm is approxtmately -
equal for all elements Usmg this techmque the total strain’ energy and the stress intensity £
factor are determmed to within’ 1 ) per cent accuracy when linear strain trlangular elements .
. are used w1th only 138 degrees- of-freedom “The ratio of the largest ezgenva]ue of the g]obal

st;ﬂness ‘matrix to, the smallest (the condztton number) is det rtmned for each mesh pattern

used It is found that the nonumform mesh patterns used here have small condltton numbers =

ANALYSIS OF SQUARE TENSILE SHEET

The geometry of the square tensile sheet with symmetric edge cracks analysed here is shown
in Figure 1. The material is assumed-to- be .lme_a_r with a modulus E = 1-0, Poisson’s ratio
v =03, and a shear modulus G = Ef{2(1+»)). When the region of concern is limited to the

crack tip then with %, v.= the material displacements in the:x; -y directions, respectively, the
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where K is'the stress 1nten_31ty factor.”
The equlhbnum 'equ Hons for plane str ain ssumptlon”' n CarteSIan co- ordmates‘can be
wntten 1n the followmg form

(At Gles+ GVU+Xm00s
A FGley+GVEY =0

wher é‘: S

XY < bod§ fordés”
€=1u,+0,y,

and B

(1+,,)(1 )

These equatlons are eihptlc and the prmczpal opéerators are of the form Vz"' Wlth = 1

In 1972 Fried and Yang® developed a method for constructing mesh patterns for boundary
value problems of the 2mth order when the solution contains a. singularity. of the form R?,
where 0<a < 1. Theu' method determines a mesh pattern in whlch the energy error per
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element is equally distributed among 2ll the elements. In particular they demonstrated that
for boundary value problems of order 2m (m =1 for harmonic and m =2 for biharmonic)
with displacement fields nmear the singular point of the form u =R®, 0<a <1, the- ﬁmte
elements near the smgularlty should have their dlameters chosen as follows :

dadasd. . T '(3)
where . - . . ' o

o; ,="iz

z—(2(p a)+3 n)/(z(a m)+n)

_and where p is. the order of the polynomal mterpolanon in the. element d the dlameter of

atl element with one node at the smgular pomt m the order of the boundary value problem,
n the number of dimensions in the boundary value ‘problem, and o the fractlon descnbmg
‘the leadmg term in the drsplacement field smgnlanty . --

The square tensile sheet represents a two- dnnensmnal boundary value problem n=2. The
form of the smgulanty is given in equatlon (1) &'=1/2, and the order of the boundary value
problem is given in eqnatlon ), m=1. Thus near the crack tip the eiement drameters should
vary as md:cated in Table B . :

Tablé 1. Near tip elemient diamiéters

Element mterpolatzon functlons TS L LI
PR .- (element.type). -, Near t1p element chameters

Linear,p=1

(constantstram trlangles) . d,44d,94, ...
Quadratic, p=2 S _ ‘
(linear strain tnan_gies) e d 16d,81d, ...

Next, we develop finite element mesh patterns in which the element diameters are varied
according to Table I and then-we numerically determine the -accuracy obtained when these
mesh patterns are used. We will not construct a nonumforrn mesh for the entire domain. Only
the portion of th¢ mesh near the crack tip will be nonumform These mesh patterns, although
not optimum, can be easily constructed by ‘anyone . usifiig a general-purpose finite element
program. Figure 2 shows the construction of the finite elément model. The maximum element
diameter indicated in Figure 2 is the element dlarneter associated with a uniform mesh. The
mesh near the crack tip was constructed as shown i in Flgure 3 with element diameter ratios
as indicated in Table T .

The stress intensity factor, Ky i; can be determlned from the finite element data by a number
of methods. Two methods were used here. The first method is called the extrapolation or
tangent method. This method uses the drsplacement data v Vs R, and requlres that

lim (e/\/R) P | (4)

R—-DD

be determined frorn the data Equanon (1) is then used to determine K. Since the nodal data
nearest the crack tip is the least accurate when polynomral elements aré used, the data at the
second and third nodes away from the crack tip was-used here. The second method used here
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Figure. 2: Typical finite element model;.

to obtain K is called the energy release_',rrzlptt_l_qd.r This met_hdd-;equires_ that the rate of change
of the strain energy with réspect to a change in the crack léngthi dU/da, be determined. Then,
K, is found from B T

(%)

2l

N dU - Yo - S P . - - - ;, .o - .
To obtain a_ value for a a second problem is solved with a different crack length, In
S e load -

S SYMMETRIC: - i

Figure 3. Mesh pattern near-crack tip7:° .
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these.calculations the second:crack-problemwas defined by: constrammg one: addltlonai element
on the x-axis from vertical displacements. (see Figure: 2) i Cieps mI AT DR IYYR
To determine the relative error in the total strain energy and in the stress mten51ty factor
their numerical values are ‘required. Tni1973: Tong -and Plan studied the convergence of finite-
element solutions for ‘the square:tensile sheet with: edge cracks.:Their celculations mdlcated-
that the total strain energy. for:the problem shown.in Figure:1 is L} 3__-228 In 1964, Bow1e,—'
analysed . the..‘:rectangular tensile sheet:with: symmetn redgescracks ;1 _
techniques. Using Bowie’s resylts the stres 1 ity factor for the squa e tensﬂe sheet an: ysed

here s Kuz, B6loo

degrees of-freedom, the' types of elements, ‘and the snnphmty of the model constructlon are.
considered:*When linear elements (constraint strain trianples) :.were used thé stress intensity
factor was obtained via the:tangent method'tc within 2 per cent of:the exact value with less
than 200 degrees-of-freedom in the finite element model. When the quadratic elements (linear
strain triangles) were used the stress intensity factor was accurate to three digits when only
138 degrees-of-freedomi “Were used.” The stréss” intensity factors determined by the tangent
method were more accurate than those determined by the .energy release method.

The finite element approximation U of the strain energy converges to the exact value U
as the number of elements is increased. Here the number of elements was increased by

Tab_le II.-Data fo;?liﬁeér elements, p =1 '(lé:(-)nsitant ’s'ttain,trr;iangies)

Maximufi element diameter 14 16 18

Degrees—of—freedglﬁ"}* . Sa 186

Strain energy S value 3 3-11
o . 5

1
% error -5

(Tangent'fﬁéth‘b’d)" R W 70 ) SRS 11 | SRR

Degr es

. Strain crergy
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uniformly reducing: the maximum -elerment. diameter-indicated:in: Figure 2.-In-this

caseg-the
convergence can be approximated by the-following powerlaw:: e

i

o

where'N., até the total niimber of elerents; and ¢4,p-are cons ARLs, LTI L T
'Figure 4 indicates that for'the r‘nf'e'sh’-ﬁa”t‘téfiis*cc’_fﬁﬁdéréd ‘here ‘the guadratic elements wore
moré dcciifate and-attained a higher eonvergeiice Tateé’ thar the’ linear elerients. If several
nonuniform mesh patterns had been constructed for the entire domain of the'square tengile
sheet; Reference 4 indicates that ‘sven bettér resulis can be eipeét’ed; S N

- SLORE=-12 h

-20

‘ Figure 4. Stfain enerﬁy _accuracy_,v:'s; ﬁﬁmber of e_lgﬁ-}e;nts":__ e

The numerical éé’}ndition riﬁmber of aﬁ 'cj)dptimanj_'é'ca_led global _s:tif-fheg_s._rmatrix is related to-
the round-off errors in the finite e_le_ment_s_olutionf’?_I_f the finite element system to be sdlved

is Kx =b then the relative error in x is given as follows:
s e o
lexl_ 107 min' C(DKD) » <7 57 2 (7)

| =l D

where C is the ratio of the fnéxi;num eigenvalue 6f=‘"I")’f('D:’€6""fc_l'ié' m:mmum, D is a diagonal
scaling matrix, and s is the number of digits in the computer, words. In Reference 7 it was
shown that

C(DKD) = C1( hmﬂx) I (Ne)Zm(n N - (8)

where Hmax and Amia are the maximum and minimumdistances between nodal points, m is
the order of the boundary value problem, n the number of physical dimensions, N, the number

of elements, and Cy is a constant. In thésé,calcula__‘(i('_):ris_the ratio of (fimax/ Bin) 18 1 /14 for the
linear elements and 1/98 for the quadratic elements, m = 1, and n =2. Here, we have
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(Mmax/ Amin) = 2 constant for each type: of element: Thus-equation (8) yields
' .::?;C(DKD) S R

lower bounds for the condition numbers are dé efmmed For that problem it is shown that
the ‘condition nirmber is moré-§énsitivé to thé minimiim- angle:m an ‘element than 1tfls to the

(maxunum mesh ratm and minimum angle in an element both remammg constant) the upper
bBound on the condmon number in“Reference’ 8 also reduces o3-! : :

20 e

Los {c(x))

L0 TR - J,‘ = ’
- 0-0.4 i e i.O T 20 ;
L ;_.LOG( e) L

“Figure 5. Condition of global stiffness matrix vs.'nurnbe? of élenients v e

linealr'ancl :tiu‘ellra_tic;:elerneht:_s;_'Ther-esults mdlcate that for:pr_aetical mesh pettems (N, <150)
the condition numbers are small enough so that the effects of round-off errors are not serious

even in smgle prec1s1on calculatlons (s 7). Also the theoretical growth rate of the condition.

number pred1cted in equatmn (9) is. represented well in Frgure 5. 0

s S CONCLUSION : o

A teehmque for desxgmng ﬁmte element mesh patterns for e]hptlc boundary value problems_
that have. solutions contammg a power type smgulanty has been numencally investigated for
a crack problem in linear elasticity. Using only polynomial finite elements and restricting the
nonuniform mesh to the immediate crack tip region, useful values of the strain energy and
stress. intensity factors were obtained with relatively few degrees-of-freedom. The element
diameter ratios used were notilarge (14/1 for the linear elements and 98/1 for quadratic).
The resulting global stifiness matrix was well conditioned and the theoretical asymptotxc growth
rate of the condmon number was observed
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