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- Statement of the Problem
N eiéméntary solution for the large, static deformations

of a generic suspension line in a solid, flat, circular’

parachute under the action of a force distribution similar to
that transmitted from the adjacent fabric is described herein.
We idealize the suspension line as a flexible string, initially
unstfessed, straight, and occupying the regionr Y=0,
0< X< L. Its deformation is defined (see Fig. 1) by
x=x(X), y=y(X)
i.e., (x,p) are the deformed coordinates of the particle that in-
itially has coordinates {X,0). 8(X) is the deformed slope angle
of the string element initially at X. The governing equations
are obtained as one-dimensional versions of those for mem-
branes, given, for example, by Otto!:

-
tanf= P {1)
o (ST e
dé : .

whiére T, the tensile force, and ¢ are independent of X and
assumed to obey the elastic constitutive law

T=E" ' - 4

The riomial_ force resultant p, is assumed to be a rectangular
pulse in X,

P=p, IR={X:X,<X<X.)
- elsewhere | - ©)

where subscripts ¥ and E denote the inner edge of the vent (the
opening at the top of the canopy) and the forward edge of the
pressurized region R, as shown in Fig. 2.

Figure 3 illustrates the relation between p and p;, the fluid
pressure on the fabric. Figure 3a shows that 2ysin(5/2) is the
distance between corresponding points on adjacent lines, i.e.,
the distance C-D in section A-A. The fluid pressure on the
fabric must be in equilibrivm with that on line C-D, therefore,
the total normal force transmitted by the adjacent fabric to the
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Fig. 1 Deformed line: a) geometry, b) forces.
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Fig. 2 Line configurations: a) initial, b} during deformation.

line at this cross section is
Po=2ppysin(B/2y ®
where 8=2n/N;, and N; is the number of lines.
Combining this with Eqgs. (1-3) and (5), eliminating y, and

defining z=X/L, we obtain the d1fferent1a1 equation for the
nonlinear pendulum,

d2e
52—4- Asinf=0

MN=0G2=2p L3 (1 +Psin(8/2)}/T i R
=0 elsewhere ™ : {7}
The boundary conditions are. -
f=n/2, ‘x=y=0 at zéO; y=0 at z=1

where z=1, X=1, is the édnﬂuence p'oint. of the lines.

So]utlon
In the unpressurized region 0<z=<z,, the solution is

8=x/2, y=L(l+€z, x=0
and in the unpressurized region zz <z < 1, the solution is
8=0(z5) =0z, y/L=—(1—-2)(1+¢sinfg

x/L=x{zg}/ L+ {(z~ zE)(_I + e)cosby
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In R, the solution that joins smoothly with that for z<z, is
given by Abramowitz and Stegun? as

sin(8/2) = m¥sn(e Im), y/L=2m"(1 +&)G~'cn(e m)
¥/L=2m"G~ Elay, [m)~E(aim) —Glz—zv) ) 7 (®)
where
m=1/2+(Gz,/2)* =sin*{Bz/2}
a=A4—-G(z—2z,),

A =Ffarcsin(Zm) " lm},

Fand E are incomplete elliptic integrals of the first and second
kinds, and sn and cn are Jacobian elliptic functions. If z,, =0,

i Fig. 3 Fabric and fine
shape during defermation:
i al overall sketch, b} line
shape, and ¢} section A-A.
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Fig. 5 Profiles of kines for 2;,,=0 and z5=0.1, 6.3, 0.5.
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the solution simplifies slightly since m =1 and A =F(z/2 1}4)
=K(¥5)=1.8547.

To complete the solution, G must be chosen to make y con-
tinuous across gz, which leads to the transcendental equation

G{1 —zp)snlog lmdn{ag )+ enlag Im) =0

This is solved numerically for G as a function of z; and z,
with results shown in Fig. 4. The empirically fitted function
logG =0.426 - 0.712g +0,16442, g=logz,
is an accurate representation in z2<0.5, as long as z,—2, is

not too small, and is displayed as the solid line in Fig. 4.
Once G is known, wé can find T and e. If the string is
assumed inextensional, e =0, and Eq. (7) implies

T="T,=2pl*sin{8/2)G 2

For a linearly elastic material, the constitutive law [Eq. (4)]
leads to a guadratic equation for ¢ with the solution

e=H—(H-1}* and H=-—1+E/(2T)

T is then found from Eq. (4). In this solution, 7—7; as
E*—oo. The total aerodynamic drag on the canopy is
D=TN;cos6z. o

Figure 5 shows the  dimensionless deformed shapes
predicted by Eq. (8) for the case z, =0, E*=1500 1b, D=200
Ib, and N; =28 when z=0.1, 0.3, and 0.5. The variables x’

cand ¥’ in the graph are defined by x'=yp/L and

y' =1—(x/L).

Conclusions
The shape of the fully open parachute in Fig. 5 agrees fairly

~ well with the proportions of a typical solid, flat, circular

canopy given in Ref. 3 in the parentheses below:
Projected diameter/flat circular diameter=0.6 (0.67)
Depth/projected diameter=0.47 (0.41)

In recent years most investigators have used the finite ele-
ment method combined with hypotheses about the pressure
distribution to solve problems in parachute inflation, e.g.,
Mullins and Reynolds.* The family of shapes obtained here
may be useful as a check on the correctness of the finite ele-
ment code for the structural part of the calculation. The
neglect of the fabric and line inertia in this solution is not
necessarily an impediment fo checking, since inertia can also
be omitted from the finite element calculation in most cases.
Whether the neglect of these inertia forces is too inaccurate in
practical calculations is a different question, whose answer
depends on the relative magnitudes of these forces and the
fabric stress forces acting on the line. These inertia forces were
sometimes neglected in earlier studies, e.g., Heinrich and
Jamison,* but more work may be needed to answer the ques-
tion definitively.
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