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_-Abstract

The initial rate of any general nth order (n not necessarily integer) chemical reaction can
be accurately and easily computed from the slope of a chord joining two points on the progress
curve. Expressions for calculating the intermediate concentration corresponding to this initial
rate are provided. Examples of the technique applied to second: and third-order reactions as
well as an example of a reaction with fractional order (r = 0.6} are given.

Introduction

Waley [1], proposed a method for determining the initial rate of an enzyme-
catalyzed reaction. The technique required only the measurement of the
slope of a chord joining two points on the progress curve. This technique is
useful because the measurement of a tangent to the progress curve can be
quite unreliable (Walter and Barrett [2]; Philo and Seiwyn [3]; Nimmo and
Mabood [4]; and Atkins and Nimmo [5]), but the measurement of a chord’s
slope can be performed simply and accurately. The formula derived by
Waley [1] to determine the concentration corresponding to the rate given
by the slope of the chord is based upon a reaction for which the Michaelis-
Menten steady state hypothesis holds. Waley [1] states that when the inte-
grated Michaelis-Menten equation does not hold, a differentiation rule can
be useful. .

The chord method introduced by Waley [1] will be extended to a general
class of reactions. In particular, the technique will be shown to apply to any
nth order reaction (n not necessarily an integer). This extension of the method
will enable the experimentalist to determine initial rates quickly and accu-
rately from the progress curve for a wide variety of reaction mechanisms.

Results and Discussion

* Consider a general nth order reaction for which the rate of change in the
concentration of material S is given by the following differential equation.
(Dot denotes differentiation with respect to time.)

(1) §= —ks",  s=s, @t=0.
The integrated form of €q. (1) is

: 88, — s"s,
(2(a) = k(n— 1)s"s, .
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for n = 1
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and 7

{2(b) t=—7— forn=1.

H a chord is drawn joining points (¢, s,} and (£, s;) on a progress curve for
the substrate concentration vs. time, the chord’s slope is easily caleulated
and is given by (s, — s;)/(f, — ¢,). By the mean value theorem for a continu-
ously differentiable function on the open interval (¢,, {,), there exists at least
one point #; between ¢, and ¢, such that $ at #; equals the slope of the chord
(Thomas [6]). Let s; be the intermediate substrate concentration corre-
sponding to ;. Using eqs. (1) and (2), s; may b_e determined. First substi-
tute s, for s in eq. (1) and use the fact that 8l,s, 1s given by (s, — )/ (¢, — ty).
The result is . : o

@) | —ks::-‘é—ﬁ -
2 T b

Now, eq. (2(a)) or (2(b)) may be used to write ¢, and ¢, in terms of s, and s,,
respectively. These results when substituted into eq. (2(c)) yield a relation-
ship between s,, s,, and sy which may be solved for s; in terms of s; and’ S
The result is ln&ependent of the rate constant & and is glven by '

B . _ —_ n—\Lln ’
(3()) 5 = (("' Ufsi 3 (515 ) om0l
. .o 81 T — 83 . . C .
and ' ' 4
‘. S o (S - 32) | : '
@by 8y = forn=1.
, o ' In Sy R

Note the trivial case n = 0 is neglected. :

Hence, if the reaction were to begin with s, = s,, the initial rate would
be (s, — 5,)/(t; — t.). To obtain the actual initial rate one more simple step
is required. Assuming the points (¢,,s,), (£, s;) have been taken far enough
apart to reduce the error introduced by any scatter in the data, the pre-
viously calculated chord slope (s, — s,)/(¢; — £,) and the corresponding
concentration s; (obtained from eq. (3(a)) or (3(b))) may now be used to
compute the actual initial rate. By eq. (1),

(4(a) ' 8lme, = s}

and | '

(4(b)) $lpp, = —hs3
Dividing eq. (4(a)) by eq. {4(b)) and siﬁ_lplifying gives
(4(c)) | ey, = 8 J(:—a)

or '

@@ 8l = (éz%‘;‘)) (z—g)
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It is interesting to observe that the relationship of s, to 5, and s, given by
eq. (3(b)) for a first order reaction is identical to the result Waley [1] ob-
tains when the Michaelis-Menten equation is obeyed. In one sense, this fact
is obvious. The differential equation for Michaelis-Menten kinetics is:

Vs
K, +s _

It is well known that when s < K, eq. (5(a)) is identical to eq. (1) with
n=1and k = V/K_, that is, first order. Hence one would “expect” the ob-

served result. However if one looks at the lntegrated form of the Mzchaehs—
Menten equatlon

(5(a)) | s= -

'. N (S - S) m
(5(b)) . t. vtV In (s)
and compares this with eq. (2(b)), it is not quite so obvious a result. The re-

sult may be shown by considering the chord’s slope (s; — s,)/(t; — ;) and
using eq. (5(b)) to compute the denominator: : :

®) t, — t, =,7"* 1n(Z—:) + (sl_ng)

When 51,8, < K., the first term on the right hand side of eq. (6) is domi-
nant since s; > s, causes In(s,/s;) > 1. This is exactly the result for t, — ¢,
which eq. (2(b)) gives with 2 = V/K,,. Since egs. (5(a)) and (6) hold ﬁ)r the
entire time the reaction is proceeding and approach the respective equa—
tions for a first order reaction as s goes to zero, the result is proved.

Waley [1] does not observe this result and in fact states that if the reac-
tion does not obey the Michaelis-Menten equation ‘a numerical scheme
may be useful. The chord method is merely the application of the mean
value theorem of calculus and as such should be expected to work for a va-
riety of common reactions, as has just been demonstrated. :

. The result for a second order reaction is given by: .

M L s= (s

An important observation concerning the extension of the method is its
-application to the kinetics of heterogeneous gas- reactmns The brommatmn
of ethylene a’s the walls of a glass vessel: :

(8) 02H4 "}" Brz — 02H4Br2

is a reaction where both reactants are weakly absorbed and the rate ex-
pression for the bimolecular heterogeneous reaction is second order in the
gas pressure (Stevens [7]). Hence for this case, with the gas pressure being
a measure of concentration, eq. (7) would be applicable. Stevens [7] also
states that when the reactants are moderately absorbed (as in the case for
the decomposition of SbH; on an antimony surface at 20°C), the rate ex-
pression is given by eq. (1) with » = 0.6. The resulting value of the inter-
mediate gas pressure, at which the reaction velocity is that given by the
slope of the chord to the progress curve, may be obtained from eq. 3(a) with
n = 0.6. i the chord is chosen so that the gas pressure at the right end of
the chord p, is half that at the left end, the intermediate pressure p; is very

simply given by p; =~ 1.454p,. :
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As a last example, consider the reaction of triphenylmethyl choride with
methanol. Emanuel [8] gives the following stoichiometric equation

9) (CeH;);CCI +.CH30H — (CSH5)3COCH3 + HCI

and states that the reaction is third-order since one more CH;OH molecule .
is involved and acts as a catalyst. Emanuel [8] gives the rate equatlon for
the product as:

ay . & = kA, — %) (Ag — %)%

where the concentrations of triphenylmethyl chiorlde and methanol are de-
noted by A, and A,, respectively. As before, subscript o represents initial
values. While this rate equation appears different from eq. (1), the same
technique applies. If the initial concentrations of the reactants are equal,
then with a simple Hnear transformation on x, the equation becomes equiva-
lent to eq. (1). If as in Emanuel [8] the concentrations are not equal, the
modified chord method may still be applied but the algebra becomes more
involved. To simplify the work, the product and initial concentrations are
transformed by:

11(2),() z=Ay,—x and A, = A, — Ay,

Substituting eqs. 11(a) and 11(b) into eq. (10) and integrating, we can
compute the concentration z;, at which the reaction would have a rate
equal to that given by the slope of a chord to the progress curve, Whlch is
given by:

2 Az — 2)
+
i) s a)

When appropriate values for the initial concentrations of triphenyl-
methyl ¢hloride and methanol and chord endpoints are used in eq. (12), the
cubic is easily solved for z;. Emanuel [8] gives experimental data for the
production of product based upon A,, = 0.106 mol/! and A,, = 0.054 mol/l.
The concentration of product is given as 0.0207 mol/! and 0.0318 mol/ at
444 min and 1150 min, respectively. Based upon these values eq. (12} gives
a value for z;, which corresponds to a product concentration of 0.0268 mol/!.
At this concentration the reaction rate is equal to the slope of the chord®
{marked A in Fig. 1} connecting these two points on the progress curve.

This information may now be used to compute the initial rate of reac-
tion. From eq. (10);

(12) zilzs + Ay =

(13) g, =kAAL

and ' R N o _

(13() 2 e, = Bl — ) (g, — )
1 o

Thus using the same procedure as was previo'usl.y demonstrated for a
general n® order reaction (eqs. (4(a)—(d)) one obtains

AloAgo | . (xZ —_ xl)
(A, — x3}{Ag, — x5) (B — £)

(14) B, =
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Figure 1. Reaction of Triphenytmethyl chloride with methanol.

Thus, for x; = 0.0268, the initial rate obtained from eq. (14) is 0.0000833 mol/
{/ — min). Emanuel [8], experimentally determined an initial rate of .
0.0000807 mol/(I — min). Hence, the initial rate computed by the chord
method is within 3% of Emanuel’s value.

In all of the cases described in this article, the results obtained may be
used to compute the value of k. Note that one may simply use the com- -
puted chord slope and the calculated concentration corresponding to this
rate to compute the k for the reaction. This may be repeated at-a number of
places along the progress curve to obtain an average value in the event
there exists scatter in the progress curve data.

This idea may be easily illustrated for the reaction described by the rate
eq. (10). Based upon the previous calculation in which a product coneentra-
tion of 0.0268 mol/! was computed, & the third crder rate constant may bhe
evaluated. The resulting % is .2967 [%/(mol® — min). Barlier in the reaction
the concentration of product is given as 0.0091 mol/! and 0.0181 mol/] at
168 and 418 min, respectively. Based upon the slope of the chord marked B
in Figure 1 and the z; calculated from eq. (12), eqs. (10) and (11) give a &
value of 0.2428 [*/(mol® — min). The average k value based upon these two
results is 0.2698 [*/(mol® — min) which is in good agreement with the cal-
culated average of 0.261 /?/(mol* — min) obtained by Emanuel [8].

In conclusion, it has been demonstrated that the chord method (Waley [1])
may be extended to reactions of arbitrary order n. Examples of reactions
with fractional order, second, and third order have been presénted to
demonstrate the versatility and simplicity of the extended chord method.
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