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It is shown that particle size distribution plays an important role in determining the fractal dimension
of & material when using gas adsorption technigues. The model currently being used to determine a
material’s fractal dimension is examined. In many cases this model works well. However, it is shown
that errors may result if this model is applied to samples with specific particle size distributions. A new
mathematical model which incorporates the particle size distribution is proposed. The new model is
shown to produce the correct value for the fractal dimension under a number of conditions for which
the current method fails. Conditions under which the currently used model can be expected to perform

well are also given. @ 1992 Academic Press, Inc.

INTRODUCTION

The use of fractal concepts to characterize
the surfaces of powders and other solids has
recently experienced tremendous growth with
applications in pharmaceuticals (1, 2), biology
(3), and general chemistry (4-7) appearing
frequently in the literature. Fractal measures,
primarily the fractal dimension D, provide in-
formation on surface roughness or total sur-
face area and hence on the potential reactivity
of the material with whatever environment in
which it is placed. In pharmaceuticals, surface
properties may relate to how the drug is ad-
sorbed into the blood stream or transported
to the site where its action is required., Physical
properties, such as the ability to compact and
dissolve, may also depend on fractal measures.
Biological applications may include the inter-
action of the blood with viruses, bacteria, and
other agents or its ability to flow freely through
natural or artificial arteries. In chemistry, sur-
face properties as characterized by fractal
measures might determine reaction rates, heats
of adsorption/desorption, and general reac-
tivity.
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Avnir and co-workers { 8-10) have used the
fractal dimension to characterize the surfaces
of quartz particles, silica gels, and other pow-
ders. The present authors (11) recently applied
fractal measures to determine the surface
characteristics of naturai polymers ( chitosan)
and their relationships to the adsorption of and
reactivity with various compounds.

The standard procedures applied to powders
often require a measurement of particle size,
usually a diameter, as one of the parameters
involved in determining the fractal dimension.
The second parameter might be the specific
surface area from gas adsorption. These mea-
surements are made on several groups of par-
ticles; the groups differ in mean particle size
and are usually obtained by sicving. No matter
what method s used to obtain the data, it is
usually assumed that the particles are mono-
disperse, and the average particle diameter is
taken as the midpoint between the sieves
which created the size group. This scaling pa-
rameter, combined with the surface area or
other measure, then provides the fractal di-
mension, D,

This paper shows that particle size distri-
bution plays an imporiant role in determining
the fractal dimension of a material when this
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dimension is based on gas adsorption tech-
niques. The fractal dimension of perfectly
smeoth spheres may be artificially increased
by as much as 30% of its allowed range by
judicious choice of particle size distributions.
Other distributions may produce curvature of
the standard plots for obtaining D and could
incorrectly signal the existence of regions of
different fractal dimension.

ANALYSIS

For a group of n smooth spherical particles
of size d; where i = 1 to n, the surface area of
each particle can be written as

hY, :kld%: 1]

where k; = w. The mass of a particle can be
written as

where k; = pw /6 for spherical particles. If the
particles are fractal, then the surface area S;
will not scale as d; raised to the power 2, but
will scale as d; raised to some power D, where
2= D=3 ie,

S; = kyd?. {3]
Taking the sum of all particies gives the total

surface area ST and mass m as

ST=k12dP

i=1

(4]

m=k, > di;

=1

[5]

whence the specific surface area s becomes

LS ZndP

m £ d?'

[6]

F:xpressing the d;’s in terms of the mean value
d,

di=d+u, [7]
where v; is the deviation of ¢; from the median
d for each particle, Eq. [6] becomes
—k 2hs(d+v)P

’= Zid )Y

(8]
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Applying the assumption that the particles are
monodisperse, i.e., v; = 0, Eq. 8] becomes

N
S:k?:kdtﬂ 3).

p [9]

Taking logs gives

In(s) = In(k) + (D - 3)In(d), [10]

the equation most often used in determining
the fractal dimension of powders. Equation
[8] is the general expression for the specific
surface area of a group of fractal particles of
varying particle size and is the starting point
for deriving the correction term for particle
distribution.

We write d: = d + oz;, where z is the stan-
dard normal random variable, d the sample
mean, and ¢ the sample standard deviation.
We have assumed that the distribution is nor-
mal (this assumption is verified experimentally
for the chitosan samples (11)). Under these
conditions it is well known that for a large
number of normally distributed values d4;,

>di=2(d+ez) =d*+ 3s%d [11]
a; z
and
>d=>(d+ oz =d*+ 62, [12]
di z;

Asis seen from Eq. {6], the quantity we wish
to approximate is

> df =2 (d+oz)P,
d;

Zj

[13]

where 2 < D < 3,
The approach taken here is to find a trans-
formation F(d, ¢, D) such that

F(d,o,3)=d*+ 36%d
F(d,e,2)=d%+ ¢2

[14a]
[14b]

and F(d, o, D) varies smoothly with D.
A suitable F(d, o, D) is simply

F(d,o,D)=dP +dP 030252 [15]

Jovrnal of Cofloid and Interfave Science, Vol. 149, No. 1, March 1, 1692



228

which vields Eqs. [14a] and [l14b] and is
smooth in D. Thus Eq. [6] becomes

P 4+ JP-13(D-2) 2
- d*+ 3c%d

We see that Eq. [16] is still somewhat in-
tractable and hence make one more transfor-
mation. Since F(d, ¢, D) is smooth in D, all
derivatives with respect to D exist. We expand
F(d, o, D) in a Taylor series around D = 3,
substitute the series ( truncated after the linear

s [16]

(D — 3) term) into Eq. [16], take the log of |

both sides and expand again to obtain

In(s) = In(C,) + (D —3)

2
X 1n(c?)+%%%—i—% [17a]
or
In(s)
=1n(C,) + (D — 3)[In(d) + B], [17b]
where | is a constant involving k and
2
a2 (18]

Note that the correction term goes to zero
as o approaches 0, since the samples are then

monodispersed. Also in the case of D = 3, the.

correction term {3 has no effect since it merely
shifts the horizontal In(s) vs In(d) line.
While the correction for sample particle size
distribution has been demonstrated for normal
distributions, a similar calculation could be
performed for other distributions such as log
normal. The normal distribution was chosen
because of our experience with chitosan {11).
Following the above approach, determina-
tion of the fractal dimension requires some
measurement of particle size (). In previous
work on chitosan powders (11) it was decided
to use the maximum diameter, measured per-
pendicular to the longest axis of the irregular
shaped particle, for this parameter. The Op-
timax image analyzer system that was available
could not provide this measurement directly
and the actual measurements of & were made
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manually using a handheld scale. The analyzer
provided the enlargement, necessary con-
trast, and mobility to select sufficient numbers
of particles for the measurement. The parti-
cles were thinly spread on a microscope slide
and the diameters of all separate particles
were measured (only dense aggregates were
avoided). Particle size distributions for several
groups of sieved chitosan particles were mea-
sured using this procedure. Particle size dis-
tributions having preselected mean and stan-
dard deviation were also computer generated
using a statistical application package for a
Hewlett-Packard 9836C computer. The pro-
gram (RNORM ) provided normally distrib-
uted random numbers.

Figure 1 compares the actual distribution
of particle diameters measured as described
above with a computer-generated set of num-
bers having a normal distribution with the
same mean and standard deviation as the
measured diameters, Statistical analysis of the
measured distribution cannot rule out the
possibility that the distribution is normal at
the 95% confidence level. Although some dif-
ferences exist between the two distributions of
Fig. 1, itis clear that the measured distribution
is no more varied or of broader range than the

computer-generated normal distribution. Data

from other size groups gives similar results.
Thus it is reasonable to conclude that the par-
ticle sizes, in any group of sieved particles, are
normally distributed and that computer-gen-
erated normal distributions are valid substi-
tutes for experimental data. Therefore, the
calculations and analyses presented in this pa-
per are based on computer-generated particles;
particle sizes for each group are normally dis-
tributed and all particles are spherical.

With a given distribution of smooth spher-
ical particles, it is a straightforward calculation
to obtain the volume (or mass if the density,
p, is known ) and surface area of the particles.
Figure 2 is a plot of In(s) vs In(d ) as suggested
by Eq. [10], where s is the specific surface area
calculated for a group of smooth spheres
(computer generated ) using Eq. {6] and 4 is
the average particle diameter. Curve A results
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FiG. 1. Bar graph comparing particle size distributions for 7 measured chitosan particles and 70 computer-
generated particles having a normal distribution with the same mean and standard deviation as the measured

particles,
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Fi1G. 2. Plot of In(s) vs In{d) for groups of computer-generated smooth particles with particle size distri-
butions chosen to give fractal dimensions greater than 2. The corrected curve is also shown. § is calculated

by applying Eq. [6] to spherical particles.
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from five groups of normally distributed par-
ticles having diameters of 33.1 = 0 {monodis-
perse), 19.2 = 5.7, 11.3 £ 6.0, 6.77 % 4.49,
and 4.18 = 3.29. The three points of curve B
are obtained from particle groups having di-
ameters of 11.3 £ 0, 6.86 + 3.52, and 4.18 =
3.29. Curve C represents monodisperse par-
ticle groups of diameters 33.1, 19.2, 11.3, 6.77,
and 4.18. Three different situations are rep-
resented by the curves A, B, and C in this fig-
ure. The slope of the linear curve A gives a
fractal dimension of D = 2.31 for the smooth
spheres. Curve B shows what could happen if
the changes in the particle size distributions
were not a uniform function of the mean
value. The three groups having the largest par-
ticles are monodisperse while the two groups
of smaller particles are not. This curve could
be viewed as having concave downward cur-
vature with questionable fractal dimension, or
as a curve representing two zones of different
fractal dimension. For this case, the finer
powders would show a fractal dimension of
about D = 2.63 while the larger particles

PISCITELLE AND SEGARS

{monodisperse ) give a fractal dimension of D
= 2.00. Curve C is the result obtained for
monodisperse particles; the fractal dimension
from this curve is D = 2.00. Curve D shows
the data corrected according to the model just
described. This curve has a fractal dimension
of 1.93, very close to the correct value (for
smooth particles) of 2.0. Also, D values outside
the range allowed (D < 2, D > 3) are possible
with still farther changes in the particle size
distribution.

Errors will also occur for particles which
have a fractal dimension if the size distribution
of the particles is not taken into account. Fig-
ure 3 is a plot similar to Fig, 2 where the
monodisperse particles have a fractal dimen-
sion of D = 2.50 {curve A). When the com-
puter-generaied particle diameters (six groups
having d = 2.71 £ 2.25,4.50 + 2.81,742 +
3.52, 12.18 £ 4.25, 20.07 £ 4.60, and 33.12
+ ) are used to calculate the total surface
area 5, total volume V (or mass m), and the
specific surface area s = §/m, curve B is ob-
tained. This curve, although not exactly linear,
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FIG. 3. Plot of In{5) vs In(&) for groups of computer-generated rough particles of fractal dimension D =
2.50 with particle size distributions chosen to give a higher value. The corrected curve is also shown, Sis

calculated by applying Eq. [6] to spherical particles.
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has a fractal dimension of about 2.66. Apply-
ing the correction of Eq. [187 gives curve C,
which has a fractal dimension of 2.51, very
close to the correct value given by the mono-
disperse particles. :

DISCUSSION

It has been shown that significant errors (up
10 30% of maximum range)} may occur if the
size distribution of the particles in the powder
being analyzed is not considered. The funda-
mental principle responsible for this error is
the nonequivalence of 2%, d? and nd? when
the d;’s are not equal. Under these conditions
it is clear that Eq. [6],

no P
s= kS5, [6]
2L d
is not the same as
knd? -
5= P%E = kP [9]

which is the form normally used. If is easily
demonstrated that the simplification made
possible by assuming monodisperse particles
can result in significant errors.

The model derived in the previous section
can be readily used to identify conditions when
corrections may be necessary. The correction
term given by Eq. [18] approaches zero (no
correction necessary) as o (the standard de-
viation ) approaches zero, Thus, if very narrow
sieve ranges are used (approximating mono-
disperse particles), corrections may not be re-
quired. Also, as the mnean diameter 4 increases
the correction term decreases. Hence the cor-
rection term is most significant at small par-
ticle diameters where the separation between
adjacent sieves may be large. Thus, as particles
get larger and/or more uniform in size, the
correction term becomes less significant and
may not be needed.

If the numerator and denominator of Eq.
[18] are divided by 42, 8 is obtained in terms
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of the coefficient of variation (C.V. = o/d or
% deviation }. Then

_ 3(C.V.)’In(3)

g 1+ 3(Cvy

[19]

This equation shows the correction factor {o
be constant for constant coefficient of varia-
tion. Under these conditions, the correction
factor has no effect on the fractal dimension
D. However, if the range or spread of particle
size remains nearly constant as the mean value
increases, 8 will decrease and the fractal di-
mension determined assuming monodisperse
particles will be smaller than the true value.

As discussed above, the particle separation
required to obtain the data of Fig. 2 was ob-
tained by sieving. The mean diameter was
taken as the midpoint between two adjacent
sieve sizes. Several groups of particles were ex-
amined with the image analyzer and for every
group examined, particles that were larger than
the mesh size were found. Many particles
smaller than the smaller sieve size were also
found. Electron micrographs showed many
particles that appeared plate-like mixed in with
other more three-dimensional particles. It was
theorized that these plate-like particles passed
through the sieve along the diagonal. When
the mesh size was multiplied by 16, nearly all
of the large particles in a group could be ex-
plained. Also, a photograph of a sieve imme-
diately after sieving showed many particles
wedged across the diagonals, a strong indica-
tion that the theorized behavior was in fact
occurring, The appearance of smaller particles
than expected is thought to be due to electro-
static forces existing at the time of sieving
holding the small particles firmly to the larger
pieces. With time, the charge decays, releasing
the small particles. No verification of this ac-
tion was attempted. Both of these actions in-
crease the range and standard deviation sig-
nificantly and may cause the coefficient of
variation to change with mean particle size.
Under these conditions, corrections to the raw
data may be required.
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If the coefficient of variation changes with
mean particle size, then the resulting plot of
In(s) vs In{d) may take on one of several
shapes, as shown in Fig, 2, The curve may be
linear but of the wrong slope to give the correct
value of D. The curve may be nonlinear,
curving either toward or away from the x-axis
depending on the way the C.V. changes with
mean particle diameter. The data may also
appear 10 show regions of different fractal di-
mension for the powder, showing either a
higher or lower fractal dimension toward the
finer particle sizes depending on the specific
nonlinear behavior of the C.V. vs d relation-
ship.

With these various possibilities for the slope
of the standard In(s) vs in(d) plots, the po-
tential for reaching the wrong conclusion
about the fractal nature of the material is high.
Fractal behavior (i.e., D > 2) could be incor-
rectly found for a collection of smooth parti-
cles {Fig. 2}, Fractal materials might be found
to be nonfractal. Nonlinear behavior might be
concluded where corrected data would show
linearity { Fig. 2). In all cases, incorrect values
of the fractal dimension would be expected.

The new eguation [17] derived in the pre-
vious section can be directly applied to surface
area measurements obtained on sieved parti-
cles. This equation requires the measurement
of the mean and standard deviation of the pa-
rameter used as a measure of the particle size
for the particles within each group. With this
information Eq. [18] allows the calculation of
the correction factor 8 and the determination
of the appropriate independent variable. The
plot of In(s) versus this new independent
variable produces a linear curve whose slope
is D — 3 as before.

CONCLUSIONS

The assumption of monodisperse particles
may lead to serious errors (up to 30% of the
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total range ) in the determination of the fractal
dimension. The magnitude and appearance of
this effect depend on the relationship between
the mean and standard deviation of the par-
ticle size as the mean value is changed.

Curvature in plots of In{s) vs In{d) may be
due to the dependence of C.V. on d in the
particle size distributions, Also, regions of dif-
ferent fractal dimension may in some cases
result from nonlinearities in the relationship
between the mean and standard deviation,

A simple correction can be applied to ac-
count for particle size distributions if the mean
and standard deviation of the distributions are
known.

The correction may be unnecessary if

{a) the coefficient of variance is constant
for all groups

(b) the fractal dimension is high (very
rough surface)

(¢} particle size range (sigma) is smali for
every group (nearly monodisperse).
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